Math, asked by surajjohnson0p5wzd6, 1 year ago

find dy/dx at x=1,y=π/4 if sin²y+cos xy=k

Answers

Answered by saurabhsemalti
27

 {sin}^{2} y +  \cos(xy)  = k \\ differentiate  \: wrt \: x\\  \\  \sin(2y)  \frac{dy}{dx}   -  \sin(xy) (y + x \frac{dy}{dx} ) = 0 \\  \frac{dy}{dx} ( \sin(2y)  - x \sin(xy) )  = y \sin(xy)  \\  \frac{dy}{dx}  =  \frac{y \sin(xy) }{ \sin(2y)  - x \sin(xy) }  \\ at \: x = 1 \: and \: y =  \frac{\pi}{4}  \\  \frac{dy}{dx}  =  \frac{ \frac{\pi}{4}  \sin( \frac{\pi}{4} ) }{ \sin( \frac{\pi}{2} )  - sin( \frac{\pi}{4}) }  \\  \frac{dy}{dx}  =  \frac{ \frac{\pi}{4 \sqrt{2} } }{1 -  \frac{1}{ \sqrt{2} } }  \\  \frac{dy}{dx}  =  \frac{ \frac{\pi}{4} }{ \sqrt{2} - 1 }
mark as brainliest if helped
Similar questions