find dy/dx for cosxy-cos^2y=k
Answers
Answered by
1
Answer:
(y sin xy) / [ sin2y - x sin xy]
explanation:
given: cos xy - cos²y = k
differentiate w.r.t X,
d(cosxy)/dx - d(cos² y)/dx = d(k)/dx
-sin xy *(d(xy)/dx) -(-2 siny cosy Dy/dx) = 0
-sin xy ( y+ x Dy/dx) + (sin2y * Dy/dx) =0
-y sin xy - x sin xy * Dy/dx + sin 2y Dy/dx =0
Dy/dx [ sin2y - x sin xy] = y sin xy
Dy/dx = (y sin xy) / [ sin2y - x sin xy]
Similar questions