find dy/dx for the following :(a) y= 4sinx,(b) y=3x^3+4x^2+5 (c) y= (x^2+1)(x^3+3) (D) y=3x^2+4 cot x (e) y=e^x lnx (f) y= x/sinx (g) y= x^2-1/x^2+1
Answers
Answered by
2
a) dy/dx= d(4sin x)/dx = 4 d(sin x)/dx = 4 cos x.
b)dy/dx= d(3 + 4 + 5)/dx
= d (3 )/dx + d (4 )/dx + d(5)/dx
= 6 + 8 +0
c) dy/dx=( +1) d (+3)/dx + (+3) d(+1)/dx
={(+1)(3)} + { (+3) (2 }
= { 3 + 3} + {2 +6}
= 5 +3+6
d) dy/dx= d(3)/dx + d(4 cot x)/dx
= 6 - 4 x
e) dy/dx= d(㏑x)/dx +㏑ x d()/dx
=/x + ㏑ x
f) dy/dx= [ sin x dx/dx - x d(sin x)/dx]/
= [sin x - x cos x]/
g) dy/dx =[(+1) d()/dx - () d()/dx]/
=[()(2) - ()(2)]/
=[()-()]/
=[ ]/
=4/
b)dy/dx= d(3 + 4 + 5)/dx
= d (3 )/dx + d (4 )/dx + d(5)/dx
= 6 + 8 +0
c) dy/dx=( +1) d (+3)/dx + (+3) d(+1)/dx
={(+1)(3)} + { (+3) (2 }
= { 3 + 3} + {2 +6}
= 5 +3+6
d) dy/dx= d(3)/dx + d(4 cot x)/dx
= 6 - 4 x
e) dy/dx= d(㏑x)/dx +㏑ x d()/dx
=/x + ㏑ x
f) dy/dx= [ sin x dx/dx - x d(sin x)/dx]/
= [sin x - x cos x]/
g) dy/dx =[(+1) d()/dx - () d()/dx]/
=[()(2) - ()(2)]/
=[()-()]/
=[ ]/
=4/
Similar questions
Science,
8 months ago
Computer Science,
8 months ago
Physics,
8 months ago
Social Sciences,
1 year ago