Physics, asked by harvi87, 10 months ago

find dy/dx for the following function
pls help me..........
class 11 physics
no irrelevant answers plz..​

Attachments:

Answers

Answered by nirman95
2

Answer:

y =  \dfrac{(x - 1)(x - 2)}{ \sqrt{x} }

 =  > y =  \dfrac{ {x}^{2} - 3x + 2 }{ \sqrt{x} }

Dividing the numerator term by denominator , we get :

 =  > y =   {x}^{ \frac{3}{2} }  - 3 \sqrt{x}  + 2 {x}^{ (-  \frac{1}{2} )}

Now apply simple differentiation technique after this step :

 =  >  \dfrac{dy}{dx}  =  \dfrac{d {(x)}^{ \frac{3}{2} } }{dx}   -  3\dfrac{d( {x}^{ \frac{1}{2} } )}{dx}  + 2\dfrac{d( {x}^{  - \frac{1}{2} } )}{dx}

 =  >  \dfrac{dy}{dx}  =  \dfrac{3}{2}  \sqrt{x}  -  \dfrac{3}{2}  \dfrac{1}{ \sqrt{x} }  + ( -  \dfrac{2}{2} ) \dfrac{1}{ {x}^{ \frac{3}{2} } }

 =  >  \dfrac{dy}{dx}  =  \dfrac{3}{2}  \sqrt{x}  -  \dfrac{3}{2}  \dfrac{1}{ \sqrt{x} }  -  \dfrac{1}{ {x}^{ \frac{3}{2} } }

Basic formula is :

 \bigstar \:  \: y =  {x}^{n}

 =  >  \dfrac{dy}{dx}  = n {x}^{(n - 1)}

Similar questions