Physics, asked by gideonkeishingreal, 5 months ago

Find dy/dx for the y=x to the power 5+x to the power3+10

Answers

Answered by Anonymous
4

Given

 \sf \to \: y \:  =  {x}^{5}  +  {x}^{3}  + 10

To Find

 \sf \to \:  \dfrac{dy}{dx}

Now Put the value of y

 \sf \to \:  \dfrac{d( {x}^{5} +  {x}^{3} + 10)  }{dx}

Use this Properties

 \sf \to \:  \dfrac{d(ax  \pm bx)}{dx} =  \dfrac{d(ax)}{dx}   \pm \dfrac{d(bx)}{dx}

We Get

 \sf \to \:  \dfrac{d( {x}^{5}) }{dx}  +  \dfrac{d( {x}^{3} )}{dx}  +  \dfrac{d(10)}{dx}

Formula we use

 \sf \to \:  \dfrac{d( {x}^{n}) }{dx}  = nx {}^{n - 1}

 \to \sf  \dfrac{d(a)}{dx}  = 0  \:  \:  \:  \:  \:  \:  \:  \: \: where \: a \: is \: constant

Now

 \sf \to \: 5 {x}^{5 - 1}  + 3 {x}^{3 - 1}  + 0

\sf \to \: 5 {x}^{4}  + 3 {x}^{2}

Answer

  \to\sf \:  \dfrac{dy}{dx}  = \sf \: 5 {x}^{4}  + 3 {x}^{2}

Similar questions