find dy/dx for x^x + y^x + x^y = b^a
Answers
Answer:
- [y^x . logy + x^y . y/X + x^x ( 1+logx)] / [ y^x . X/y + x^y . logx ]
Step-by-step explanation:
x^x + y^x + x^y = b^a
let us consider, x^x = z, y^x = w, x^y = q
so, z+w+q= b^a
differentiate wrt X.
dz/dx + DW/dx + dq/dx = 0. ---------->@
first consider x^x = z
apply log on both sides.
log (x^x) = log z
x log X = log z
now differentiate wrt X on both sides.
x . 1/X + logx . 1 = 1/z dz/dx
dz/dx = z( 1+logx) = x^x ( 1+logx). --------> 1
similarly, calculate for DW/dx, dq/dx.
x. 1/y . Dy/dx + logy = 1/w . DW/dx
DW/dx = y^x ( X/y . Dy/dx + log y ). -------> 2
y/x + logx . Dy/dx = 1/q. dq/dx
dq/dx = x^y ( y/x + logx . Dy/dx). ----------> 3
substitute 1,2,3 in @equation.
x^x ( 1+logx) + y^x . X/y . Dy/dx + y^x . logy + x^y . y/X
+ x^y . logx . Dy/dx =0
Dy/dx [ y^x . X/y + x^y . logx ]
= - [y^x . logy + x^y . y/X + x^x ( 1+logx)]
Dy/dx = - [y^x . logy + x^y . y/X + x^x ( 1+logx)] / [ y^x . X/y + x^y . logx ]