Math, asked by krishnacheliaahs, 3 months ago

Find dy/dx for y=x^x^x^...^x

Answers

Answered by afdwl
0

Answer:

Step-by-step explanation:

y=x^{x^{x^{x^{....^{x} } } } } \\y=x^{y} \\lny=ylnx\\\frac{d}{dx}(lny)=\frac{d}{dx}(ylnx)\\\frac{1}{y}   \frac{dy}{dx} =\frac{y}{x} +lnx\frac{dy}{dx} \\\\\frac{dy}{dx}=\frac{y^2}{x}+ylnx\frac{dy}{dx}\\\frac{dy}{dx}(1-ylnx)= \frac{y^2}{x}\\\frac{dy}{dx}=\frac{\frac{y^2}{x}}{1-ylnx}\\\frac{dy}{dx}=\frac{y^2}{x(1-ylnx)} \\

Similar questions