Math, asked by sangmamatgrik75, 12 hours ago

find dy/dx if √1+x/1-x​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  \sqrt{\dfrac{1 + x}{1 - x} }

On squaring both sides, we get

\rm :\longmapsto\: {y}^{2} = \dfrac{1 + x}{1 - x}

On taking log both sides, we get

\rm :\longmapsto\: log \: {y}^{2} =log \:  \bigg[ \dfrac{1 + x}{1 - x} \bigg]

We know

\boxed{ \tt{ \: log {x}^{y} = y \: logx}}  \\  \\ and \\  \\ \boxed{ \tt{ \: log \frac{x}{y} = logx - logy}}

So, using these, we get

\rm :\longmapsto\:2 \: logy = log(1 + x) - log(1 - x)

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} (2 \: logy) = \dfrac{d}{dx} [log(1 + x) - log(1 - x)]

\rm :\longmapsto\:2\dfrac{d}{dx} (\: logy) = \dfrac{d}{dx}log(1 + x) - \dfrac{d}{dx} log(1 - x)

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} logx =  \frac{1}{x} \: }}

So, using this, we get

\rm :\longmapsto\:2 \: \dfrac{1}{y}\dfrac{dy}{dx}  = \dfrac{1}{1 + x}\dfrac{d}{dx} (1 + x)  - \dfrac{1}{1 - x}\dfrac{d}{dx} (1 - x)

\rm :\longmapsto\:\: \dfrac{2}{y}\dfrac{dy}{dx}  = \dfrac{1}{1 + x}(0 + 1)  - \dfrac{1}{1 - x} (0 - 1)

\rm :\longmapsto\:\: \dfrac{2}{y}\dfrac{dy}{dx}  = \dfrac{1}{1 + x} +  \dfrac{1}{1 - x}

\rm :\longmapsto\:\: \dfrac{2}{y}\dfrac{dy}{dx}  = \dfrac{1 - x + 1 + x}{(1 + x)(1 - x)}

\rm :\longmapsto\:\: \dfrac{2}{y}\dfrac{dy}{dx}  = \dfrac{2}{(1 + x)(1 - x)}

\rm :\longmapsto\:\: \dfrac{1}{y}\dfrac{dy}{dx}  = \dfrac{1}{(1 + x)(1 - x)}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{y}{(1 + x)(1 - x)}

Or

\rm :\longmapsto\:\dfrac{dy}{dx} =  \sqrt{\dfrac{1 + x}{1 - x} } \times \dfrac{1}{(1 + x)(1 - x)}

\rm :\longmapsto\:\dfrac{dy}{dx}  = \dfrac{1}{ \sqrt{1 - x} \: \sqrt{1 + x}  \: (1 - x)}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ \sqrt{1 + x} \:   \: {\bigg(1 - x \bigg) }^{\dfrac{3}{2} } }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by HeartCrusher
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  \sqrt{\dfrac{1 + x}{1 - x} }

On squaring both sides, we get

\rm :\longmapsto\: {y}^{2} = \dfrac{1 + x}{1 - x}

On taking log both sides, we get

\rm :\longmapsto\: log \: {y}^{2} =log \:  \bigg[ \dfrac{1 + x}{1 - x} \bigg]

We know

\boxed{ \tt{ \: log {x}^{y} = y \: logx}}  \\  \\ and \\  \\ \boxed{ \tt{ \: log \frac{x}{y} = logx - logy}}

So, using these, we get

\rm :\longmapsto\:2 \: logy = log(1 + x) - log(1 - x)

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} (2 \: logy) = \dfrac{d}{dx} [log(1 + x) - log(1 - x)]

\rm :\longmapsto\:2\dfrac{d}{dx} (\: logy) = \dfrac{d}{dx}log(1 + x) - \dfrac{d}{dx} log(1 - x)

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} logx =  \frac{1}{x} \: }}

So, using this, we get

\rm :\longmapsto\:2 \: \dfrac{1}{y}\dfrac{dy}{dx}  = \dfrac{1}{1 + x}\dfrac{d}{dx} (1 + x)  - \dfrac{1}{1 - x}\dfrac{d}{dx} (1 - x)

\rm :\longmapsto\:\: \dfrac{2}{y}\dfrac{dy}{dx}  = \dfrac{1}{1 + x}(0 + 1)  - \dfrac{1}{1 - x} (0 - 1)

\rm :\longmapsto\:\: \dfrac{2}{y}\dfrac{dy}{dx}  = \dfrac{1}{1 + x} +  \dfrac{1}{1 - x}

\rm :\longmapsto\:\: \dfrac{2}{y}\dfrac{dy}{dx}  = \dfrac{1 - x + 1 + x}{(1 + x)(1 - x)}

\rm :\longmapsto\:\: \dfrac{2}{y}\dfrac{dy}{dx}  = \dfrac{2}{(1 + x)(1 - x)}

\rm :\longmapsto\:\: \dfrac{1}{y}\dfrac{dy}{dx}  = \dfrac{1}{(1 + x)(1 - x)}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{y}{(1 + x)(1 - x)}

Or

\rm :\longmapsto\:\dfrac{dy}{dx} =  \sqrt{\dfrac{1 + x}{1 - x} } \times \dfrac{1}{(1 + x)(1 - x)}

\rm :\longmapsto\:\dfrac{dy}{dx}  = \dfrac{1}{ \sqrt{1 - x} \: \sqrt{1 + x}  \: (1 - x)}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ \sqrt{1 + x} \:   \: {\bigg(1 - x \bigg) }^{\dfrac{3}{2} } }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions