Math, asked by rishabsultan1, 9 months ago

Find dy/dx, if cos(xy) = x+ y​

Answers

Answered by Sharad001
65

Question :-

 \sf{Find \:  \:  \frac{dy}{dx}  \:  \:  \: if \:  \cos(xy) = x + y}

Answer :-

 \rightarrow \: \boxed{\sf{  \frac{dy}{dx}  =   - \frac{1 +y \sin(xy) }{1 + x \sin(xy)} }} \:

Solution :-

According to the question,

 \rightarrow \sf{ \cos \: (xy) = x + y} \\  \\   \text{differentiating \: with \: respect \: to \: x \: } \\  \\  \rightarrow \sf{  -  \sin(xy) \:  \bigg(x \frac{dy}{dx}  + y \bigg) = 1 +  \frac{dy}{dx} } \\  \\  \rightarrow \sf{- x \:  \sin(xy) \:  \frac{dy}{dx}  - y \sin(xy) = 1  +  \frac{dy}{dx} } \\  \\  \rightarrow \sf{ \frac{dy}{dx}  + x \sin(xy) \:  \frac{dy}{dx}  =  - 1  - y \sin \: xy)} \\  \\  \rightarrow  \boxed{\sf{  \frac{dy}{dx}  =   - \frac{1 +y \sin(xy) }{1 + x \sin(xy)} }}

___________________

Answered by Anonymous
117

\bold{\large{\underline{\underline{\sf{StEp\:by\:stEp\:explanation:}}}}}

According to the question, dy/dx, if cos(xy) = x+ y

\begin{lgathered}\rightarrow \tt{ \cos \: (xy) = x + y} \\ \\ \red{differentiating \: with \: respect \: to \: x \: } \\ \\ \rightarrow \tt{ - \sin(xy) \: \bigg(x \frac{dy}{dx} + y \bigg) = 1 + \frac{dy}{dx} } \\ \\ \rightarrow \tt{- x \: \sin(xy) \: \frac{dy}{dx} - y \sin(xy) = 1 + \frac{dy}{dx} } \\ \\ \rightarrow \tt{ \frac{dy}{dx} + x \sin(xy) \: \frac{dy}{dx} = - 1 - y \sin \: xy)} \\ \\ \rightarrow \boxed{\tt{ \frac{dy}{dx} = - \frac{1 +y \sin(xy) }{1 + x \sin(xy)} }}\end{lgathered}

Similar questions