Math, asked by lalanifiroz1, 11 months ago

find dy/dx,
If e^2x+e^2y=e^2(x+y)​

Answers

Answered by IamIronMan0
0

Answer:

 {e}^{2x}  +  {e}^{2y}  =  {e}^{2(x + y)}  \\  \\ diff. \:  \: wrt \:  \: x \: and \: use \: chain \: rule \\  \\ {e}^{2x}  (2)+  {e}^{2y}(2 \frac{dy}{dx}   ) \\ =  {e}^{2(x + y)}. \frac{d}{dx} (2(x + y)) \\  = {e}^{2(x + y)}. 2(1 +  \frac{dy}{dx} ) \\  \implies \\( {e}^{2(x + y)  } - { {e}^{2y}) }. \frac{dy}{dx}  = {e}^{2x} -   {e}^{ 2(x + y)} \\  \implies \\  \frac{dy}{dx}   =  \frac{{e}^{2x} -   {e}^{ 2(x + y)}} { {e}^{2(x + y)  } - { {e}^{2y} }} =  \frac{1 -  {e}^{2y} }{ {e}^{2x} - 1 }

Similar questions