Math, asked by pritikoche0123, 2 months ago

find dy/dx, if e^siny=xy​

Answers

Answered by sandy1816
4

Answer:

Your answer attached in the photo

Attachments:
Answered by mathdude500
5

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: {e}^{siny} = xy

Taking log on both sides, we get

\rm :\longmapsto\: log \: ({e}^{siny}) = log(xy)

\rm :\longmapsto\:siny \: loge \: =  \:  logx \:  + \:  logy

\red{\bigg \{ \because \:log {x}^{y} = ylogx \:  \bigg \}} \\ \red{\bigg \{ \because \: \: log(xy) = logx + logy\bigg \}}

\rm :\longmapsto\:\:siny \:  =  \: logx \:  +  \: logy

\red{\bigg \{ \because \: loge = 1\bigg \}}

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} \:siny \:  = \dfrac{d}{dx}( \: logx \:  +  \: logy)

\rm :\longmapsto\:cosy\dfrac{dy}{dx} \:  = \dfrac{d}{dx}\: logx \:  +  \dfrac{d}{dx}\: logy

\green{\boxed{  \because \: \bf \:\dfrac{d}{dx}sinx = cosx  \: }}

\rm :\longmapsto\:cosy\dfrac{dy}{dx} \:  = \dfrac{1}{x} \:  +  \dfrac{1}{y} \dfrac{dy}{dx}

\rm :\longmapsto\:cosy\dfrac{dy}{dx} \:  - \: \dfrac{1}{y} \dfrac{dy}{dx} = \dfrac{1}{x}

\rm :\longmapsto\: \bigg(cosy \:  - \: \dfrac{1}{y}  \bigg)\dfrac{dy}{dx} = \dfrac{1}{x}

\rm :\longmapsto\: \bigg(\: \dfrac{y \: cosy - 1}{y}  \bigg)\dfrac{dy}{dx} = \dfrac{1}{x}

\bf\implies \:\dfrac{dy}{dx} = \dfrac{y}{x(y \: cosy \:  -  \: 1)}

Additional Information :-

\green{\boxed{ \: \bf \:\dfrac{d}{dx}cosx =  -  \: sinx  \: }}

\green{\boxed{ \: \bf \:\dfrac{d}{dx}cotx =  -  \:  {cosec}^{2} x  \: }}

\green{\boxed{ \: \bf \:\dfrac{d}{dx}tanx =  \:  {sec}^{2} x  \: }}

\green{\boxed{ \bf \: \dfrac{d}{dx}secx = secx \: tanx\: }}

\green{\boxed{ \bf \: \dfrac{d}{dx}cosecx = -  \:  cosecx \: cotx\: }}

\green{\boxed{ \bf \:\dfrac{d}{dx}k = 0  \: }}

\green{\boxed{ \bf \:\dfrac{d}{dx}x= 1  \: }}

\green{\boxed{ \bf \:\dfrac{d}{dx}logx=  \frac{1}{x}  \: }}

\green{\boxed{ \bf \:  \dfrac{d}{dx} {e}^{x} \: =  \:  {e}^{x}  }}

\green{\boxed{ \bf \:  \dfrac{d}{dx} {a}^{x} \: =  \:  {a}^{x}  log(a)  }}

Similar questions