Math, asked by purohitdev768, 6 hours ago

find dy/dx if log(x^2+2x)​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\ \: \: log( {x}^{2}  + 2x)

Let us assume that

\rm :\longmapsto\ \: \:y =  log( {x}^{2}  + 2x)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\ \: \:\dfrac{d}{dx} y =  \dfrac{d}{dx}log( {x}^{2}  + 2x)

We know,

\boxed{\tt{ \dfrac{d}{dx}logx =  \frac{1}{x} \: }}

and

\boxed{\tt{ \dfrac{d}{dx}f[g(x)] = f'[g(x)]\dfrac{d}{dx}g(x)}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ {x}^{2}  + 2x}\dfrac{d}{dx}( {x}^{2}  + 2x)

We know,

\boxed{\tt{ \dfrac{d}{dx} {x}^{n}  \:  =  \:  {nx}^{n - 1} \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ {x}^{2}  + 2x}\bigg[ {2x}^{2 - 1}  + 2\bigg]

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ {x}^{2}  + 2x}\bigg[2x  + 2\bigg]

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{2(x + 1)}{x(x + 2)}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by EmperorSoul
13

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\ \: \: log( {x}^{2}  + 2x)

Let us assume that

\rm :\longmapsto\ \: \:y =  log( {x}^{2}  + 2x)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\ \: \:\dfrac{d}{dx} y =  \dfrac{d}{dx}log( {x}^{2}  + 2x)

We know,

\boxed{\tt{ \dfrac{d}{dx}logx =  \frac{1}{x} \: }}

and

\boxed{\tt{ \dfrac{d}{dx}f[g(x)] = f'[g(x)]\dfrac{d}{dx}g(x)}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ {x}^{2}  + 2x}\dfrac{d}{dx}( {x}^{2}  + 2x)

We know,

\boxed{\tt{ \dfrac{d}{dx} {x}^{n}  \:  =  \:  {nx}^{n - 1} \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ {x}^{2}  + 2x}\bigg[ {2x}^{2 - 1}  + 2\bigg]

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ {x}^{2}  + 2x}\bigg[2x  + 2\bigg]

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{2(x + 1)}{x(x + 2)}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions