Math, asked by omkeshdwivedi, 8 months ago

find dy/dx if:

sqrt(1-x^2) + sqrt(1-y^2) = a(x-y)

Answers

Answered by Sharad001
25

Question :-

 \bf{Find \:  \frac{dy}{dx}  \: if - } \\  \to \bf{ \sqrt{1 -  {x}^{2} }  +  \sqrt{1 -  {y}^{2} }  =a (x - y)}

Answer :-

\to  \boxed{\bf{ \frac{dy}{dx}  =  \frac{ \bigg(a +  \frac{x}{ \sqrt{1 -  {x}^{2} } }  \bigg)}{ \bigg(a -  \frac{y}{ \sqrt{1 -  {y}^{2} } } \bigg) } }} \\  \sf{or} \\  \: \to \boxed{ \bf{ \frac{dy}{dx}  =  \frac{ \sqrt{1 -  {y}^{2} }  \:\bigg( a \sqrt{1 -  {x}^{2} } + x \bigg) \:  }{ \sqrt{1 -  {x}^{2} } \bigg(a \sqrt{1 -  {y}^{2} } - y \bigg)  } }} \:

To Find :-

 \implies \:  \bf{  \frac{dy}{dx} } \\

Explanation :-

We have

\to \bf{ \sqrt{1 -  {x}^{2} }  +  \sqrt{1 -  {y}^{2} }  =a (x - y)} \:

differentiate with respect to x on both sides .

 \because  \boxed{\bf{\frac{d}{dx}  \sqrt{x}  =   \frac{1}{2 \sqrt{x} } }} \\  \therefore \\  \to \bf{ \frac{1}{2 \sqrt{1 -  {x}^{2} } }  \frac{d}{dx} (1 -  {x}^{2} ) +  \frac{1}{2 \sqrt{1 -  {y}^{2} } }  \frac{d}{dx} (1 -  {y)}^{2} } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf{ = a - a \frac{dy}{dx} } \\  \\  \to \bf{} \frac{ - 2x}{2 \sqrt{1 -  {x}^{2} } }   -  \frac{2y}{2 \sqrt{1 -  {y}^{2} } }  \frac{dy}{dx}  = a - a \frac{dy}{dx}  \\  \\  \to \bf{ a \frac{dy}{dx}  -  \frac{y}{ \sqrt{1 -  {y}^{2} } }  \frac{dy}{dx} = a +  \frac{x}{ \sqrt{1 -  {x}^{2} } }} \\  \\  \to  \bf{ \frac{dy}{dx}    \bigg(a -  \frac{y}{ \sqrt{1 -  {y}^{2} } }  \bigg) = a +  \frac{x}{ \sqrt{1 -  {x}^{2} } } } \\  \\  \to  \boxed{\bf{ \frac{dy}{dx}  =  \frac{ \bigg(a +  \frac{x}{ \sqrt{1 -  {x}^{2} } }  \bigg)}{ \bigg(a -  \frac{y}{ \sqrt{1 -  {y}^{2} } } \bigg) } }} \\  \sf{or} \\

 \to  \bf{\frac{dy}{dx}  =  \frac{ \frac{a \sqrt{1 -  {x}^{2} }  + x}{ \sqrt{1 -  {x}^{2} } } }{ \frac{a \sqrt{1 -  {y}^{2}  - y} }{ \sqrt{1 -  {y}^{2} } } } } \\  \\  \to \boxed{ \bf{ \frac{dy}{dx}  =  \frac{ \sqrt{1 -  {y}^{2} }  \:\bigg( a \sqrt{1 -  {x}^{2} } + x \bigg) \:  }{ \sqrt{1 -  {x}^{2} } \bigg(a \sqrt{1 -  {y}^{2} } - y \bigg)  } }}

Answered by Saby123
2

 \tt{\huge{\green{Solution_{Sd} \:: - }}}

 \tt{\orange {Step-By-Step-Explaination \::- }} >

 \begin{lgathered}\because \boxed{\bf{\dfrac{d}{dx} \sqrt{x} = \dfrac{1}{2 \sqrt{x} } }} \\ \therefore \\ \to \bf{ \dfrac{1}{2 \sqrt{1 - {x}^{2} } } \dfrac{d}{dx} (1 - {x}^{2} ) + \dfrac{1}{2 \sqrt{1 - {y}^{2} } } \dfrac{d}{dx} (1 - {y)}^{2} } \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bf{ = a - a \dfrac{dy}{dx} } \\ \\ \to \bf{} \dfrac{ - 2x}{2 \sqrt{1 - {x}^{2} } } - \dfrac{2y}{2 \sqrt{1 - {y}^{2} } } \dfrac{dy}{dx} = a - a \dfrac{dy}{dx} \\ \\ \to \bf{ a \dfrac{dy}{dx} - \frac{y}{ \sqrt{1 - {y}^{2} } } \dfrac{dy}{dx} = a + \dfrac{x}{ \sqrt{1 - {x}^{2} } }} \\ \\ \to \bf{ \dfrac{dy}{dx} \bigg(a - \dfrac{y}{ \sqrt{1 - {y}^{2} } } \bigg) = a + \dfrac{x}{ \sqrt{1 - {x}^{2} } } } \\ \\ \to \boxed{\bf{ \dfrac{dy}{dx} = \dfrac{ \bigg(a + \dfrac{x}{ \sqrt{1 - {x}^{2} } } \bigg)}{ \bigg(a - \dfrac{y}{ \sqrt{1 - {y}^{2} } } \bigg) } }} \\ \sf{or} \\\end{lgathered}

 </p><p>\begin{lgathered}\to \bf{d\frac{dy}{dx} = \dfrac{ \dfrac{a \sqrt{1 - {x}^{2} } + x}{ \sqrt{1 - {x}^{2} } } }{ \dfrac{a \sqrt{1 - {y}^{2} - y} }{ \sqrt{1 - {y}^{2} } } } } \\ \\ \to \boxed{ \bf{ \dfrac{dy}{dx} = \dfrac{ \sqrt{1 - {y}^{2} } \:\bigg( a \sqrt{1 - {x}^{2} } + x \bigg) \: }{ \sqrt{1 - {x}^{2} } \bigg(a \sqrt{1 - {y}^{2} } - y \bigg) } }}\end{lgathered}

Similar questions