Chemistry, asked by AminuBinAbdullah, 1 year ago

find dy/dx if x^2 from the first principle​

Answers

Answered by shadowsabers03
7

First principle of derivative is nothing but,

\displaystyle\mathsf{\dfrac {d}{dx}[f(x)]=\lim_{h\to 0}\dfrac {f(x+h)-f(x)}{h}}

Here,

\mathsf {f(x)=x^2}

Then,

\displaystyle\mathsf {\dfrac {d}{dx}[f(x)]=\lim_{h\to 0}\dfrac {f(x+h)-f(x)}{h}}\\\\\\\mathsf {\dfrac {d}{dx}(x^2)=\lim_{h\to 0}\dfrac {(x+h)^2-x^2}{h}}\\\\\\\mathsf {\dfrac {d}{dx}(x^2)=\lim_{h\to 0}\dfrac {x^2+2xh+h^2-x^2}{h}}\\\\\\\mathsf {\dfrac {d}{dx}(x^2)=\lim_{h\to 0}\dfrac {2xh+h^2}{h}}\\\\\\\mathsf {\dfrac {d}{dx}(x^2)=\lim_{h\to 0}\dfrac {h(2x+h)}{h}}\\\\\\\mathsf {\dfrac {d}{dx}(x^2)=\lim_{h\to 0}(2x+h)}\\\\\\\mathsf {\dfrac {d}{dx}(x^2)=2x+0}\\\\\\\mathsf {\dfrac {d}{dx}(x^2)=\underline {\underline {2x}}}

Similar questions