Math, asked by saisankar4, 5 months ago

find dy/dx if x = a (1-t^2/1+t^2), y= 2bt/1+t^2

(do it in {d/dt} form and send solution)​

Answers

Answered by hassan97742
2

Answer:

i hope it's helpful

mark me brainlist

Attachments:
Answered by Manmohan04
13

Given,

\[x = a\left( {\frac{{1 - {t^2}}}{{1 + {t^2}}}} \right)\] and \[y = 2b\left( {\frac{t}{{1 + {t^2}}}} \right)\]

Solution,

\[y = 2b\left( {\frac{t}{{1 + {t^2}}}} \right)\]

Differentiate with respect to t.

\[ \Rightarrow \frac{{dy}}{{dt}} = 2b \times \frac{{\left( {1 + {t^2}} \right) \times 1 - t \times \left( {2t} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]

\[ \Rightarrow \frac{{dy}}{{dt}} = 2b \times \frac{{\left( {1 + {t^2}} \right) - 2{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]

\[ \Rightarrow \frac{{dy}}{{dt}} = 2b \times \frac{{1 - {t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]----------(1)

\[x = a\left( {\frac{{1 - {t^2}}}{{1 + {t^2}}}} \right)\]

Differentiate with respect to t.

\[ \Rightarrow \frac{{dx}}{{dt}} = a \times \frac{{\left( {1 + {t^2}} \right) \times \left( { - 2t} \right) - \left( {1 - {t^2}} \right) \times \left( {2t} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]

\[ \Rightarrow \frac{{dx}}{{dt}} = a \times \left( {\frac{{ - 2t - 2{t^3} - 2t + 2{t^3}}}{{{{\left( {1 + {t^2}} \right)}^2}}}} \right)\]

\[ \Rightarrow \frac{{dx}}{{dt}} = a \times \left( {\frac{{ - 4t}}{{{{\left( {1 + {t^2}} \right)}^2}}}} \right)\]----------------(2)

Divide equation 1 by equation 2.

\[\frac{{\frac{{dy}}{{dt}}}}{{\frac{{dx}}{{dt}}}} = \frac{{2b \times \frac{{1 - {t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}}}{{a \times \left( {\frac{{ - 4t}}{{{{\left( {1 + {t^2}} \right)}^2}}}} \right)}}\]

\[\frac{{dy}}{{dx}} = \frac{{2b \times \left( {1 - {t^2}} \right)}}{{a \times \left( { - 4t} \right)}}\]

\[\frac{{dy}}{{dx}} = \frac{{b\left( {1 - {t^2}} \right)}}{{2at}}\]

Hence the value is \[\frac{{b\left( {1 - {t^2}} \right)}}{{2at}}\]

Similar questions