Math, asked by laks20023, 7 months ago

find dy/dx if x and y are related as (x-a)^2+ (y-b)^2=r^2​

Answers

Answered by udayagrawal49
1

Answer:

\frac{dy}{dx} = -\frac{(x-a)}{(y-b)}

Step-by-step explanation:

Given, (x-a)^{2}+(y-b)^{2} = r^{2}

x^{2}+a^{2}-2ax+y^{2}+b^{2}-2by= r^{2}

or x^{2}-2ax+y^{2}-2by= r^{2}-a^{2}-b^{2}

On differentiating both sides w.r.t. x, we get

2x-2a+2y\frac{dy}{dx}-2b\frac{dy}{dx} = 0

or x-a+\frac{dy}{dx}(y-b) = 0

or \frac{dy}{dx} = -\frac{(x-a)}{(y-b)}

Similar questions