Math, asked by pradeepchennai023, 22 days ago

Find dy÷dx if x=at^2,y=2at

Answers

Answered by DeeznutzUwU
2

\text{It is given that }x = at^{2} \text{ and }y = 2at

\text{We must find }\dfrac{dy}{dx}

\implies \text{We can write }\dfrac{dy}{dx} \text{ as }\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}

\implies x = at^{2}

\text{Applying derivative in terms of }t

\implies \dfrac{dx}{dt} = \dfrac{d(at^{2})}{dt}

\implies \dfrac{dx}{dt} = a\times \dfrac{d(t^{2})}{dt}

\implies \dfrac{dx}{dt} = a\times2t

\implies \dfrac{dx}{dt} = 2at \text{ ------ (i)}

\implies y = 2at

\text{Applying derivative in terms of }t

\implies \dfrac{dy}{dt} = \dfrac{d(2at)}{dt}

\implies \dfrac{dy}{dt} = 2a\times \dfrac{dt}{dt}

\implies \dfrac{dy}{dt} = 2a \text{ ------ (ii)}

\implies \dfrac{dy}{dx} = \dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}

\text{From (i) and (ii)}

\implies \dfrac{dy}{dx} = \dfrac{2a}{2at}

\implies \boxed{\dfrac{dy}{dx} = \dfrac{1}{t}}

Similar questions