Math, asked by ASHIISH4120, 6 months ago

Find dy/dx if x log y + y log x = 5

Answers

Answered by MaheswariS
8

\textbf{Given:}

\mathsf{x\;logy+y\;logx=5}

\textbf{To find:}

\mathsf{\dfrac{dy}{dx}}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{x\;logy+y\;logx=5}

\textsf{Differentiate with respect to x}

\mathsf{x\left(\dfrac{1}{y}\right)\dfrac{dy}{dx}+logy(1)+y\left(\dfrac{1}{x}\right)+logx\left(\dfrac{dy}{dx}\right)=0}

\mathsf{\left(\dfrac{x}{y}\right)\dfrac{dy}{dx}+logy+\dfrac{y}{x}+logx\left(\dfrac{dy}{dx}\right)=0}

\mathsf{\left(\dfrac{x}{y}\right)\dfrac{dy}{dx}+logx\left(\dfrac{dy}{dx}\right)=-\left(logy+\dfrac{y}{x}\right)}

\mathsf{\left(\dfrac{x}{y}+logx\right)\dfrac{dy}{dx}=-\left(logy+\dfrac{y}{x}\right)}

\mathsf{\left(\dfrac{x+y\,logx}{y}\right)\dfrac{dy}{dx}=-\left(\dfrac{x\,logy+y}{x}\right)}

\mathsf{\dfrac{dy}{dx}=-\left(\dfrac{x\,logy+y}{x+y\,logy}\right){\times}\dfrac{y}{x}}

\implies\boxed{\mathsf{\dfrac{dy}{dx}=\dfrac{-y(x\,logy+y)}{x(x+y\,logy)}}}

\textbf{Find more:}

If y=x+√(x²-1), then y-x(dy/dx) = ???

https://brainly.in/question/21230642

Similar questions