Math, asked by Tejeet, 4 months ago

find dy/dx if x^m•y^n=x^m+y^n​

Answers

Answered by Anonymous
1

Answer:

x {}^{m} .y {}^{n}  = x {}^{m } + y {}^{n}  \\  \\ diff \: .with .\: respect .\: to. \: x \:  \\  \\ x {}^{m - 1} .y {}^{n}  + x {}^{m}. y {}^{n - 1} . \frac{dy}{dx}  = x {}^{m - 1}  + y {}^{n - 1} . \frac{dy}{dx}  \\  \\  =  >  \frac{dy}{dx} (x {}^{m} .y {}^{n - 1}  - y {}^{n - 1} ) = x {}^{m - 1}  - x {}^{m - 1} .y {}^{n}  \\  \\  =  >  \frac{dy}{dx}  =   \frac{x {}^{m - 1} (1 - y {}^{n} )}{y {}^{n - 1} (x {}^{m} - 1) }  \\  \\  \\  \\ formula \:  \:  -  \:  \:  \frac{d}{dx} (x) = 1 \\  \\  \\  \frac{d}{dx}( x {}^{2} ) = 2x


Tejeet: how did it just became "x" after all this?
Anonymous: d/dx(x^2) = 2.x^(2-1) = 2.x
Similar questions