Math, asked by yy1498324, 2 months ago

find dy/dx if x=(t+1/t)^a, y=a^t+1/t, a> 0,

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\red{\rm :\longmapsto\:x =  {\bigg(t + \dfrac{1}{t}  \bigg) }^{a}}

and

\red{\rm :\longmapsto\:y =  {\bigg(a \bigg) }^{\bigg(t + \dfrac{1}{t}  \bigg)}}

Now, Consider

\red{\rm :\longmapsto\:x =  {\bigg(t + \dfrac{1}{t}  \bigg) }^{a}}

On differentiating both sides w. r. t. t, we get

{\rm :\longmapsto\:\dfrac{d}{dt}x = \dfrac{d}{dt} {\bigg(t + \dfrac{1}{t}  \bigg) }^{a}}

 \red{\boxed{ \rm{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}}

{\rm :\longmapsto\:\dfrac{dx}{dt} = a {\bigg(t + \dfrac{1}{t}  \bigg) }^{a - 1}}\dfrac{d}{dt}\bigg(t + \dfrac{1}{t}  \bigg)

\rm :\longmapsto\:\dfrac{dx}{dt} = a {\bigg(t + \dfrac{1}{t}  \bigg) }^{a - 1}\bigg(1 - \dfrac{1}{ {t}^{2} }  \bigg)

Now, Consider

\red{\rm :\longmapsto\:y =  {\bigg(a \bigg) }^{\bigg(t + \dfrac{1}{t}  \bigg)}}

On differentiating w. r. t. t, we get

{\rm :\longmapsto\:\dfrac{d}{dt}y = \dfrac{d}{dt} {\bigg(a \bigg) }^{\bigg(t + \dfrac{1}{t}  \bigg)}}

 \red{\boxed{ \rm{ \dfrac{d}{dx} {a}^{x}  =  {a}^{x}loga}}}

{\rm :\longmapsto\:\dfrac{dy}{dt} =  {\bigg(a \bigg) }^{\bigg(t + \dfrac{1}{t}  \bigg)}loga \: \dfrac{d}{dt}\bigg(t + \dfrac{1}{t}  \bigg)}

\rm :\longmapsto\:\dfrac{dy}{dt} =  {\bigg(a \bigg) }^{\bigg(t + \dfrac{1}{t}  \bigg)}loga \: \bigg(1  -  \dfrac{1}{ {t}^{2} }  \bigg)

Now, Consider

\red{\rm :\longmapsto\:\dfrac{dy}{dx}}

\rm \:  =  \:  \: \dfrac{dy}{dt} \:  \div  \: \dfrac{dx}{dt}

\rm \:  =  \:  \: \dfrac{{\bigg(a \bigg) }^{\bigg(t + \dfrac{1}{t}  \bigg)}loga \: \bigg(1  -  \dfrac{1}{ {t}^{2} }  \bigg)}{a {\bigg(t + \dfrac{1}{t}  \bigg) }^{a - 1}\bigg(1 - \dfrac{1}{ {t}^{2} }  \bigg)}

\rm \:  =  \:  \: \dfrac{{\bigg(a \bigg) }^{\bigg(t + \dfrac{1}{t}  \bigg)}loga \: }{a {\bigg(t + \dfrac{1}{t}  \bigg) }^{a - 1} }

Additional Information :-

\boxed{ \rm{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}

\boxed{ \rm{ \dfrac{d}{dx}k = 0}}

\boxed{ \rm{ \dfrac{d}{dx}x = 1}}

\boxed{ \rm{ \dfrac{d}{dx}sinx = cosx}}

\boxed{ \rm{ \dfrac{d}{dx}cosx =  -  \: sinx}}

\boxed{ \rm{ \dfrac{d}{dx}cosecx =  -  \: cosecx \: cotx}}

\boxed{ \rm{ \dfrac{d}{dx}secx =  \: secx \: tanx}}

\boxed{ \rm{ \dfrac{d}{dx}tanx =  \: sec ^{2} x \:}}

\boxed{ \rm{ \dfrac{d}{dx}cotx =  -  \: cosec ^{2} x \:}}

Similar questions