Math, asked by rs1974346, 10 months ago

find dy/dx if x + √xy + y = 1​

Answers

Answered by VyomK
8

Answer:

Given x+√xy +y=1

Differentiate w.r.t.x

1+1/2√xy (x dy/dx +y 1)+dy/dx =0

Or (1+y/2√xy)+dy/dx (1+x/2√xy) =0

Or dy/dx =-(1+y/2√xy)/(1+x/2√xy)

Or dy/dx =-(1+√y/2√x)/(1+√x/2√y)

Or dy/dx =-(2√x+√y)(2√y+√x) /4√xy

Step-by-step explanation:

Answered by rinayjainsl
0

Answer:

The value of given differential is

   \frac{dy}{dx} =  \frac{ - (y + 2 \sqrt{xy}) }{x + 2 \sqrt{xy} }

Step-by-step explanation:

Given expression is

x +  \sqrt{xy}  + y = 1

Differentiating with respect to x on both sides,we get

 \frac{d}{dx} (x +  \sqrt{xy}  + y) = 0 \\  =  > 1 +  \sqrt{x}  \frac{d}{dx} ( \sqrt{y} ) +  \sqrt{y}  \frac{d}{dx} ( \sqrt{x} ) +  \frac{dy}{dx}  = 0 \\  =  > 1 +  \frac{ \sqrt{x} }{2 \sqrt{y}  }(  \frac{dy}{dx} ) +  \frac{ \sqrt{y} }{2 \sqrt{x} }  +  \frac{dy}{dx}  = 0 \\  =  > 1 +  \frac{dy}{dx} ( \frac{ \sqrt{x} }{2 \sqrt{y} }  + 1) =  - \frac{ \sqrt{y} }{2 \sqrt{x} }  \\  =  >  \frac{dy}{dx}  =  \frac{ \frac{ -  \sqrt{y} }{2 \sqrt{x} } - 1 }{ \frac{ \sqrt{x} }{2 \sqrt{y} } + 1 }  =  \frac{ -  \sqrt{y} - 2 \sqrt{x}  }{ \sqrt{x} + 2 \sqrt{y}  }  \times   \sqrt{ \frac{y}{x} }   \\  =  \frac{ - (y + 2 \sqrt{xy}) }{x + 2 \sqrt{xy} }

Therefore,the value of given differential is

   \frac{dy}{dx} =  \frac{ - (y + 2 \sqrt{xy}) }{x + 2 \sqrt{xy} }

#SPJ3

Similar questions