Math, asked by plachimootilsasi519, 3 months ago

Find dy/dx ,if x^y=y^x​

Answers

Answered by ridhya77677
3

Answer:

 {x}^{y}  =  {y}^{x}  \\ taking \: log \: both \: sides \\  log( {x}^{y} )  =  log( {y}^{x} )  \\  =  > y log(x)  = x log(y)  \\  =  > differentiating \: both \: sides \\  log(x)  \times  \frac{dy}{dx}  +  \frac{y}{x}  =  log(y)  +  \frac{x}{y}  \times  \frac{dy}{dx}  \\  =  >  \frac{dy}{dx} ( log(x)  -  \frac{x}{y} ) =  log(y)  -  \frac{y}{x} \\  =  >  \frac{dy}{dx}  =  \frac{ log(y) -  \frac{y}{x}  }{ log(x) -  \frac{x}{y}  }

Similar questions