Math, asked by muddu36, 1 year ago

find dy/dx if x³+y³-3xy²-3y=15..​

Answers

Answered by KnowMyPain
4

x^3+y^3-3xy^2-3y=15\\\\\text{Apply derivatives on both sides}\\\\\dfrac{d}{dx}(x^3+y^3-3xy^2-3y)=\dfrac{d}{dx}(15)\\\\\\\dfrac{d}{dx}(x^3)+\dfrac{d}{dx}(y^3)-\dfrac{d}{dx}(3xy^2)-\dfrac{d}{dx}(3y)=0\\\\\\3x^2+3y^2.\dfrac{dy}{dx}-3\bigg[x.2y\dfrac{dy}{dx}+y^2\bigg]-3.\dfrac{dy}{dx}=0\\\\\\3x^2+3y^2.\dfrac{dy}{dx}-6xy\dfrac{dy}{dx}-3y^2-3.\dfrac{dy}{dx}=0\\\\\\3y^2.\dfrac{dy}{dx}-6xy\dfrac{dy}{dx}-3.\dfrac{dy}{dx}=3y^2-3x^2

\dfrac{dy}{dx}=\dfrac{3(y^2-x^2)}{(3y^2-6xy-3)}=\dfrac{3(y^2-x^2)}{3(y^2-2xy-1)}\\\\\\\boxed{\mathbf{\dfrac{dy}{dx}=\dfrac{y^2-x^2}{y^2-2xy-1}}}

Answered by sumitgujjar78
0

Answer:

\begin{gathered}x^3+y^3-3xy^2-3y=15\\\\\text{Apply derivatives on both sides}\\\\\dfrac{d}{dx}(x^3+y^3-3xy^2-3y)=\dfrac{d}{dx}(15)\\\\\\\dfrac{d}{dx}(x^3)+\dfrac{d}{dx}(y^3)-\dfrac{d}{dx}(3xy^2)-\dfrac{d}{dx}(3y)=0\\\\\\3x^2+3y^2.\dfrac{dy}{dx}-3\bigg[x.2y\dfrac{dy}{dx}+y^2\bigg]-3.\dfrac{dy}{dx}=0\\\\\\3x^2+3y^2.\dfrac{dy}{dx}-6xy\dfrac{dy}{dx}-3y^2-3.\dfrac{dy}{dx}=0\\\\\\3y^2.\dfrac{dy}{dx}-6xy\dfrac{dy}{dx}-3.\dfrac{dy}{dx}=3y^2-3x^2\end{gathered}

x

3

+y

3

−3xy

2

−3y=15

Apply derivatives on both sides

dx

d

(x

3

+y

3

−3xy

2

−3y)=

dx

d

(15)

dx

d

(x

3

)+

dx

d

(y

3

)−

dx

d

(3xy

2

)−

dx

d

(3y)=0

3x

2

+3y

2

.

dx

dy

−3[x.2y

dx

dy

+y

2

]−3.

dx

dy

=0

3x

2

+3y

2

.

dx

dy

−6xy

dx

dy

−3y

2

−3.

dx

dy

=0

3y

2

.

dx

dy

−6xy

dx

dy

−3.

dx

dy

=3y

2

−3x

2

\begin{gathered}\dfrac{dy}{dx}=\dfrac{3(y^2-x^2)}{(3y^2-6xy-3)}=\dfrac{3(y^2-x^2)}{3(y^2-2xy-1)}\\\\\\\boxed{\mathbf{\dfrac{dy}{dx}=\dfrac{y^2-x^2}{y^2-2xy-1}}}\end{gathered}

dx

dy

=

(3y

2

−6xy−3)

3(y

2

−x

2

)

=

3(y

2

−2xy−1)

3(y

2

−x

2

)

dx

dy

=

y

2

−2xy−1

y

2

−x

2

Similar questions