Physics, asked by leninwangkhem2015, 9 months ago

Find dy/dx if y=1/x³​

Answers

Answered by Ekaro
10

Given :

We have been provided : \bf{y=\dfrac{1}{x^3}}

To Find :

We have to find dy/dx.

SoluTion :

:\implies\sf\:y=\dfrac{1}{x^3}

:\implies\sf\:\dfrac{dy}{dx}=x^{-3}\dfrac{1}{dx}

:\implies\sf\:\dfrac{dy}{dx}=-3x^{-3-1}

:\implies\sf\:\dfrac{dy}{dx}=-3x^{-4}

:\implies\boxed{\bf{\purple{\dfrac{dy}{dx}=-\dfrac{3}{x^4}}}}

Remember :

\dag\bf\:y=x^n

\dag\bf\:\dfrac{dy}{dx}=nx^{n-1}


Anonymous: Awesomee!
Answered by Anonymous
6

Given ,

The function is y = 1/x³ = x^(-3)

Differentiating y wrt x , we get

 \tt \implies \frac{dy}{dx}  =  \frac{d {(x)}^{ - 3} }{dx}

 \tt \implies\frac{dy}{dx}  =  - 3 {(x)}^{  - 3 - 1}

 \tt \implies \frac{dy}{dx}  =  - 3 {(x)}^{ - 4}

 \tt \implies \frac{dy}{dx}  =  \frac{ - 3}{ {(x)}^{4} }

Remmember :

\tt \implies  \frac{d {(x)}^{n} }{dx}  = n {(x)}^{n - 1}

 \tt \implies \frac{d(u \pm v)}{dx}  =  \frac{d(u)}{dx} \pm\frac{d(v)}{dx}

\tt \implies \frac{d(u.v)}{dx}     = v \frac{d(u)}{dx}  + u \frac{d(v)}{dx}

 \implies \tt \frac{d}{dx}  (\frac{u}{v} ) =  \frac{v \frac{d(u)}{dx}   -  u \frac{d(v)}{dx} }{ {(v)}^{2} }

Similar questions