Math, asked by harshittripathi5256, 8 months ago

Find dy/dx if y=10^x^x + 10^x^10 + 10^10^x

Answers

Answered by BrainlyTornado
13

ANSWER:

2x { \big({10}^{x} \big) }^{x}  +  {10}^{x + 1}  { \big({10}^{x} \big) }^{10}  +  log( {10}^{10} )  { \big({10}^{10} \big) }^{x}

GIVEN:

y =  {  \big({10}^{x} \big) }^{x}  + {  \big({10}^{x} \big) }^{10} + {  \big({10}^{10} \big) }^{x}

TO FIND:

dy / dx

FORMULAE:

log (xⁿ) = n log(x)

d/dx [log(x)] = 1/x

 \frac{d}{dx}  \big( {a}^{x} \big) =  {a}^{x}  log(a)

d/dx(uv) = uv' + vu'

d/dx(constant) = 0

log 10 = 1

NOTE: CALCULATION IS IN ATTACHMENT.

Attachments:
Similar questions