Physics, asked by adarsh1098, 8 months ago

Find dy/dx, if y= 2(x^3)-2x+4. Also find dy/dx,when x=3.​

Answers

Answered by TeerthaHarshi
1

Explanation:

dy/dx=6x^2_2

substituting 3 we get 6(9)-2=52

Answered by TheValkyrie
2

Answer:

\bigstar{\bold{\dfrac{dy}{dx}=6x^{2}-2}}

\bigstar{\bold{When\:x=3,\dfrac{dy}{dx}=52}}

Explanation:

\Large{\underline{\underline{\bf{Given:}}}}

  • y = 2x³ - 2x + 4
  • x = 3

\Large{\underline{\underline{\bf{To\:Find:}}}}

\sf{\dfrac{d}{dx} (y)}

\sf{\dfrac{d}{dx} (y)\:when\:x=3}

\Large{\underline{\underline{\bf{Solution:}}}}

→ Here,

  y = 2x³ - 2x + 4

→ Differentiating with respect to x

  \sf{\dfrac{dy}{dx}=\dfrac{d}{dx} (2x^{3}  -2x+4)}

→ Differentiating individually

  \sf{\dfrac{dy}{dx}=\dfrac{d}{dx}(2x^{3})-\dfrac{d}{dx}(2x)+\dfrac{d}{dx}(4)}

→ Applying identities and taking the constants out,

  \sf{\dfrac{dy}{dx} =2\times3\times x^{2} -2\times 1 +0}

  \sf{\dfrac{dy}{dx}=6x^{2}-2}

→ Hence the derivative of the function is 6x² - 2

\boxed{\bold{\dfrac{dy}{dx}=6x^{2}-2}}

→ Now when x = 3,

  6x² - 2 = 6 × 3² - 2

              = 6 × 9 - 2

              = 54 - 2

              = 52

→ Hence dy/dx when x = 3 is 52

\boxed{\bold{When\:x=3,\dfrac{dy}{dx}=52}}

\Large{\underline{\underline{\bf{Identities\:used:}}}}

\sf{\dfrac{d}{dx}(x^{n} )=n\:x^{n-1} }

\sf{\dfrac{d}{dx} (k)=0}

where k = a constant

\sf{\dfrac{d}{dx}(x)=1}

Similar questions