Math, asked by sheershamguha, 4 months ago

find dy/dx if y =5-x/5+x​

Answers

Answered by Anonymous
3

Solution

Given

  \tt \implies \:  \:  \dfrac{dy}{dx}  =  \dfrac{5 - x}{5 + x}

Using u/v Method

 \tt \implies \:  \dfrac{d \bigg( \dfrac{u}{v} \bigg)}{dx}  =  \dfrac{ v\dfrac{du}{dx}  - u \dfrac{dv}{dx} }{ {v}^{2} }

we get

 \tt \implies \:  \dfrac{dy}{dx}  =  \dfrac{(5 + x) \dfrac{d(5 - x)}{dx}  - (5 - x) \dfrac{d(5 + x)}{dx} }{(5 + x) ^{2} }

 \tt \implies \:  \dfrac{dy}{dx}  =  \dfrac{(5 + x) \times  - 1  - (5 - x) \times 1}{(5 + x) ^{2} }

 \tt \implies \:  \dfrac{dy}{dx}  =  \dfrac{ - (5 + x) - (5 - x)}{(5 + x)^{2} }

 \tt \implies \:  \dfrac{dy}{dx}  =  \dfrac{ - 5 - x - 5 + x}{(5 + x) ^{2} }

 \tt \implies \:  \dfrac{dy}{dx}  =  \dfrac{ - 10}{(5 + x)^{2} }

Similar questions