Math, asked by tripathiragni2498, 7 months ago

find dy/dx if y =√ax2 +bx +c​

Answers

Answered by Asterinn
5

Given :

y =  \sqrt{a} \:   {x}^{2}  + bx + c

To find :

 \dfrac{dy}{dx}

Solution :

y =  \sqrt{a} \:   {x}^{2}  + bx + c

Now differentiating both sides :-

 \dfrac{dy}{dx}  =  \dfrac{d( \sqrt{a}{x}^{2}  + bx + c)}{dx}

\dfrac{dy}{dx}  =   \dfrac{d( \sqrt{a} {x}^{2} ) }{dx}  + \dfrac{d( bx )}{dx}  + \dfrac{d( c )}{dx}

\dfrac{dy}{dx}  =  \sqrt{a} \:  \dfrac{d(  {x}^{2} ) }{dx}  +b \:  \dfrac{d( x )}{dx}  + \dfrac{d( c )}{dx}

\dfrac{dy}{dx}  =  2\sqrt{a}  \: x\:   +b  + 0

\dfrac{dy}{dx}  =  2\sqrt{a}  \: x\:   +b

Answer :

\dfrac{dy}{dx}  =  2\sqrt{a}  \: x\:   +b

______________________

\large\bf\blue{Additional-Information}

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

________________________

Answered by isha00333
1

Given: \[y = \sqrt a {x^2} + bx + c\].

To find: \[\frac{{dy}}{{dx}}\]

Solution:

Differentiate y with respect to x.

\[y = \sqrt a {x^2} + bx + c\]

\[ \Rightarrow \frac{{dy}}{{dx}} = \frac{{d\left( {\sqrt a {x^2} + bx + c} \right)}}{{dx}}\]

\[ \Rightarrow \frac{{dy}}{{dx}} = \frac{{d\left( {\sqrt a {x^2}} \right)}}{{dx}} + \frac{{d\left( {bx} \right)}}{{dx}} + \frac{{d\left( c \right)}}{{dx}}\]

\[ \Rightarrow \frac{{dy}}{{dx}} = \sqrt a \frac{{d\left( {{x^2}} \right)}}{{dx}} + b\frac{{d\left( x \right)}}{{dx}} + c\frac{{d\left( 1 \right)}}{{dx}}\]

\[ \Rightarrow \frac{{dy}}{{dx}} = 2\sqrt a x + b + 0\]

\[ \Rightarrow \frac{{dy}}{{dx}} = 2\sqrt a  + b\]

Similar questions