Math, asked by mohitbelsare123, 10 months ago

Find
dy/dx
if y=cos^-1
 \sqrt{cos \: x}


Answers

Answered by Anonymous
21

Question :

Find dy/dx if

y = cos⁻¹(√cosx)

Theory and Formulas of Differention:

•Chain rule

Let y =f(t) , t = g(u) and u =m(x)

Then ,

 \frac{dy}{dx}  =  \frac{dy}{dt}  \times  \frac{dt}{du}  \times  \frac{du}{dx}

•some genral derivatives

1) \frac{d( \cos(x) )}{dx}  =  - sin \: x

2) \frac{d( \sin {}^{ - 1} (x)) }{dx}  =  \frac{1}{ \sqrt{1 - x {}^{2} } }

3) \frac{dy( \cos {}^{ - 1} (x)) }{dx}  =  \frac{ - 1}{ \sqrt{1 - x {}^{2} } }

4) \frac{d( \cot {}^{ - 1} (x)) }{dx}  =  \frac{ - 1}{1 + x {}^{2} }

5) \frac{d( \tan {}^{ - 1} (x) )}{dx}  =  \frac{1}{1 + x {}^{2} }

6) \frac{d( \sqrt{x} )}{dx}  =  \frac{1}{2 \sqrt{x} }

Solution :

y =  \cos {}^{ - 1} ( \sqrt{ \cos \: x} )

use chain rule , to Differnatiate the term

 \frac{dy}{dx}  =  \frac{d( \cos {}^{ - 1}  \sqrt{ cos  \: x} ) }{d( \sqrt{ \cos \: x} )}  \times  \frac{d( \sqrt{ \cos \: x } )}{d(cos \: x)}  \times  \frac{d(cosx)}{dx}

 \implies \:  \frac{dy}{dx}  =  \frac{ - 1}{ \sqrt{1 -  \cos(x) } }  \times  \frac{1}{2 \sqrt{cos \: x} } \times  - sin \: x

 \frac{dy}{dx}  =  \frac{sin \: x}{2 \sqrt{cos \: x}   \times \sqrt{1 -  \cos(x) } }

which is the required solution!

Answered by MarshmellowGirl
7

 \large \underline{ \red{ \boxed{ \bf \orange{Required \: Answer}}}}

Attachments:
Similar questions