Math, asked by shikhakumari7891, 1 year ago

Find dy/dx if y= cos(sin(x)^1/2)^1/2

Answers

Answered by Sharad001
25

Question :-

 \sf \: find \:  \frac{dy}{dx}  \: if \: y =  \cos  {( \sin  {x}^{ \frac{1}{2} } )}^{ \frac{1}{2} }  \\

Answer :-

\boxed{  \to \sf \frac{dy}{dx}  =  \frac{ -  \cos (\sqrt{x} )\sin\{ \sqrt{ \sin (\sqrt{x}) } \:    \} }{4 \sqrt{x}  \sqrt{ \sin( \sqrt{x} )} } \: } \:  \\

Solution :-

We have ,

 \sf \to \: y =  \cos  {( \sin  {x}^{ \frac{1}{2} } )}^{ \frac{1}{2} }  \\ \\ \sf we \: can \: write \: it \:  \\  \\  \to \sf \:  y =  \cos \{ \sqrt{ \sin (\sqrt{x}) } \:    \} \\  \\ \sf differentiate \: with \: respect \: to \: x \\  \\  \to \sf \:  \frac{dy}{dx}  =  \frac{d}{dx} \cos \{ \sqrt{ \sin (\sqrt{x}) } \:    \} \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{\because \sf \:  \frac{d}{dx}  \cos x =  -  \sin x} \\   \\  \to \sf \: \frac{dy}{dx}  =  -  \sin \{ \sqrt{ \sin (\sqrt{x}) } \:    \} \frac{d}{dx} \{ \sqrt{ \sin (\sqrt{x}) } \:    \} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{  \because \sf \frac{d}{dx} \:  \sqrt{x}   =  \frac{1}{2 \sqrt{x} } } \\  \\  \to \sf  \frac{dy}{dx} \:  =  \frac{ -\sin\{ \sqrt{ \sin (\sqrt{x}) } \:    \} }{2 \sqrt{ \sin (\sqrt{x}) } }  \:  \frac{d}{dx}   \sin(\sqrt{x}  )\\  \\  \to \sf  \frac{dy}{dx}  =  \frac{ -\sin\{ \sqrt{ \sin (\sqrt{x}) } \:    \} }{2 \sqrt{ \sin (\sqrt{x}) } } \:  \cos( \sqrt{x} ) \frac{d}{dx}  \sqrt{x}  \\  \\ \boxed{  \to \sf \frac{dy}{dx}  =  \frac{ -  \cos (\sqrt{x} )\sin\{ \sqrt{ \sin (\sqrt{x}) } \:    \} }{4 \sqrt{x}  \sqrt{ \sin( \sqrt{x} )} } \: }

Similar questions