Math, asked by himan63, 1 year ago

find dy/dx,if y=cos√sinx

Answers

Answered by kiran12355
3

Answer:

y=cosVsinx diffrentiate w.r.to x, dy/dx=d/dx (cosVsinx) =-sinVsinx.d/dx (Vsinx) =-sinVsinx.1/2Vsinx.d/dx (sinx) dy/dx=-sinVsinx.1/2Vsinx.cosx

Answered by HappiestWriter012
5

Differentiation

Given, y = cos (√sinx)

y =  \cos( \sqrt{sinx} )  \\  \\  \frac{dy}{dx}  =  \frac{d}{dx} (\cos( \sqrt{sinx} ) \:  \\  \\  \frac{dy}{dx}   =  - sin( \sqrt{sinx} ) \times  \frac{ d}{dx} ( \sqrt{sinx} ) \\  \\ \frac{dy}{dx}   =  - sin( \sqrt{sinx} ) \times  \frac{ 1}{2 ( \sqrt{sinx} ) } \times  \frac{d}{dx}(sinx) \\  \\  \frac{dy}{dx}   =  - sin( \sqrt{sinx} ) \times  \frac{ 1}{2 ( \sqrt{sinx} ) } \times  cosx \\  \\  \frac{dy}{dx}  =  \dfrac{ - cosx. \sin( \sqrt{  sinx } ) }{2( \sqrt{sinx} )}

We have used the chain rule of differentiation.

 \frac{dy}{dx}  =  \frac{dy}{dt}  \times  \frac{dt}{dx}

Differentiation of sine function.

 \frac{d}{dx} (sinx) = cosx

Differentiation of cosine function

 \frac{d}{dx} (cosx) =  - sinx

Differentiation of square function

 \frac{d}{dx} ( \sqrt{x} ) =  \frac{1}{2 \sqrt{x} }

Similar questions