Math, asked by jadhavtriveni456, 6 months ago

Find dy/dx if y= log2^x + logx^x

Answers

Answered by sachin1291998
0

Step-by-step explanation:

मौसम सर्द हो या लहज़ा मेरी दोनों से ही नहीं बनती

Attachments:
Answered by Asterinn
16

Given :

 \bf y = log {2}^{x}  + log \:  {x}^{x}

To find :

 \bf \dfrac{dy}{dx}

Solution :

\sf \implies y = log {2}^{x}  + log \:  {x}^{x}

We know that :-

 \underline{ \boxed{ \bf log \:  {a}^{n}  = n \: log \: a }}

\sf \implies y =x \:  log {2}+x \:  log \:  {x}

\sf \implies  \dfrac{dy}{dx} = \dfrac{d(x \:  log {2}+x \:  log \:  {x}  )}{dx}

\sf \implies  \dfrac{dy}{dx} = \dfrac{d(x \:  log {2}  )}{dx} + \dfrac{d(x \:  log \:  {x}  )}{dx}

\sf \implies  \dfrac{dy}{dx} =log {2} \dfrac{d(x \:    )}{dx} + \dfrac{d(x \:  log \:  {x}  )}{dx}

\sf \implies  \dfrac{dy}{dx} =log {2}  + \dfrac{d(x \:  log \:  {x}  )}{dx}

Now to differentiate xlogx use product rule :-

 \boxed{ \bf\dfrac{d(uv)}{dx}  = u \dfrac{dv}{dx}  + v u \dfrac{du}{dx}}

\sf \implies  \dfrac{dy}{dx} =log {2}  + \dfrac{d(x \:    )}{dx}logx +x \dfrac{d(log \: x \:    )}{dx}

We know that :-

 \boxed{ \bf\dfrac{d(log \: t)}{dt}  = \dfrac{1}{t}  }

\sf \implies  \dfrac{dy}{dx} =log {2}  + logx + \bigg(x  \times \dfrac{ \:   1}{x}\bigg)

\sf \implies  \dfrac{dy}{dx} =log {2}  + logx + 1

We know that :-

 \boxed{ \bf \large log  \: {a}  + log \: b = log \: ab}

\sf \implies  \dfrac{dy}{dx} =log {2x}  + 1

Answer :

 \large \bf \: log {2x}   + 1

Similar questions