Math, asked by aryan3664, 1 year ago

Find dy/dx if y= root tan root x

Attachments:

Answers

Answered by pal69
65

y=√(tan√x)

y=(tan√x)^-1/2

dy/dx=d/dx(tan√x)^-1/2

=1/2√(tan√x).d/dx(tan√x)

=1/2√(tan√x). sec²√x. d√x/dx

=1/2√(tan√x). sec²√x .1/2√x

=(sec²√x)/4√(xtan√x)


aryan3664: Thnks bro
pal69: welcome
Answered by erinna
33

The value of dy/dx is \dfrac{\sec ^2\left(\sqrt{x}\right)}{4\sqrt{x}\sqrt{\tan \left(\sqrt{x}\right)}}.

Step-by-step explanation:

The given function is

y=\sqrt{\tan\sqrt{x}}

We need to find the value of dy/dx.

Differentiate with respect to x.

\dfrac{dy}{dx}=\frac{1}{2\sqrt{\tan \left(\sqrt{x}\right)}}\cdot \dfrac{d}{dx}\tan \left(\sqrt{x}\right)                   [\because \dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}]

\dfrac{dy}{dx}=\frac{1}{2\sqrt{\tan \left(\sqrt{x}\right)}}\cdot \sec^2 \left(\sqrt{x}\right)\cdot \dfrac{d}{dx}\sqrt{x}                [\because \dfrac{d}{dx}\tan x=\sec^2x]

\dfrac{dy}{dx}=\frac{1}{2\sqrt{\tan \left(\sqrt{x}\right)}}\cdot \sec^2 \left(\sqrt{x}\right)\cdot \dfrac{1}{2\sqrt{x}}                [\because \dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}]

\dfrac{dy}{dx}=\dfrac{\sec ^2\left(\sqrt{x}\right)}{4\sqrt{x}\sqrt{\tan \left(\sqrt{x}\right)}}

Therefore, the value of dy/dx is \dfrac{\sec ^2\left(\sqrt{x}\right)}{4\sqrt{x}\sqrt{\tan \left(\sqrt{x}\right)}}.

#Learn more

If y=sin root x, what is dy/dx?

https://brainly.in/question/4838471

Similar questions