Math, asked by karmankaur6104, 9 days ago

find dy/dx if y=sin^-1(x^2√1-x^2 -x√1-x^4

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg( {x}^{2} \sqrt{1 -  {x}^{2}} - x \sqrt{1 -  {x}^{4}}\bigg)

can be rewritten as

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg( {x}^{2} \sqrt{1 -  {x}^{2}} - x \sqrt{1 -  {( {x}^{2})}^{2}}\bigg)

We know,

 \boxed{ \sf{ \:  {sin}^{x} -  {sin}^{ - 1}y =  {sin}^{ - 1}(x \sqrt{1 -  {y}^{2}} - y \sqrt{1 -  {x}^{2}}}}

So, using this identity, we get

\red{\rm :\longmapsto\:y =  {sin}^{ - 1} {x}^{2} -  {sin}^{ - 1}x}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx} {sin}^{ - 1} {x}^{2} - \dfrac{d}{dx} {sin}^{ - 1}x

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ \sqrt{1 -  {( {x}^{2})}^{2} } }\dfrac{d}{dx} {x}^{2} - \dfrac{1}{ \sqrt{1 -  {x}^{2} } }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \dfrac{d}{dx} {sin}^{ - 1}x \:  =  \: \dfrac{1}{ \sqrt{1 -  {x}^{2} } }\bigg \}}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ \sqrt{1 -  {( {x}^{4})}} }2x - \dfrac{1}{ \sqrt{1 -  {x}^{2} } }

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{2x}{ \sqrt{1 -  {( {x}^{4})}} } - \dfrac{1}{ \sqrt{1 -  {x}^{2} } }

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{2x}{ \sqrt{(1 -  {{x}^{2})(1 +  {x}^{2})}} } - \dfrac{1}{ \sqrt{1 -  {x}^{2} } }

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ \sqrt{1 -  {x}^{2} } }\bigg(\dfrac{2x}{ \sqrt{1 + {x}^{2} } } - 1\bigg)

Additional Information :-

\red{\rm :\longmapsto\:\dfrac{d}{dx} {cos}^{ - 1}x =  -  \: \dfrac{1}{ \sqrt{1 -  {x}^{2} } }}

\red{\rm :\longmapsto\:\dfrac{d}{dx} {cosec}^{ - 1}x =  -  \: \dfrac{1}{ x\sqrt{{x}^{2}  - 1} }}

\red{\rm :\longmapsto\:\dfrac{d}{dx} {sec}^{ - 1}x =  \: \dfrac{1}{ x\sqrt{{x}^{2}  - 1} }}

\red{\rm :\longmapsto\:\dfrac{d}{dx} {tan}^{ - 1}x = \dfrac{1}{1 +  {x}^{2} }}

\red{\rm :\longmapsto\:\dfrac{d}{dx} {cot}^{ - 1}x = -  \:  \dfrac{1}{1 +  {x}^{2} }}

\red{\rm :\longmapsto\:\dfrac{d}{dx}logx = \dfrac{1}{x}}

Similar questions