Math, asked by nandinisbp2b124, 3 months ago

find dy /dx if y= sin^-1 (x^2)

Answers

Answered by Anonymous
7

 \huge\bf { \red S \green O \pink L \blue U \orange T \purple I \red O \pink N \green{...}}\\

\longmapsto \sf y =  { \sin}^{ - 1}( {x}^{2}) \\

 \longmapsto \sf\sin y =  {x}^{2} \\

 \longmapsto \sf \cos y \bigg\lgroup \frac{dy}{dx} \bigg \rgroup = 2x\\

 \longmapsto \sf\frac{dy}{dx}  =  \frac{2x}{ \cos y} \\

\longmapsto \sf\frac{dy}{dx}  =  \frac{2x}{ \sqrt{1 -  { \sin}^{2}y } }\\

\longmapsto \sf\frac{dy}{dx} =  \frac{2x}{ \sqrt{1 -  { {(x}^{2}) }^{2} } }\\

\longmapsto\boxed{ \sf\frac{dy}{dx} =  \frac{2x}{ \sqrt{1 -  {x}^{4} }} }\\

Answered by sunnykrpatel54021
6

Step-by-step explanation:

 \huge\bf { \red S \green O \pink L \blue U \orange T \purple I \red O \pink N \green{...}}\\

\longmapsto \sf y =  { \sin}^{ - 1}( {x}^{2}) \\

 \longmapsto \sf\sin y =  {x}^{2} \\

 \longmapsto \sf \cos y \bigg\lgroup \frac{dy}{dx} \bigg \rgroup = 2x\\

 \longmapsto \sf\frac{dy}{dx}  =  \frac{2x}{ \cos y} \\

\longmapsto \sf\frac{dy}{dx}  =  \frac{2x}{ \sqrt{1 -  { \sin}^{2}y } }\\

\longmapsto \sf\frac{dy}{dx} =  \frac{2x}{ \sqrt{1 -  { {(x}^{2}) }^{2} } }\\

\longmapsto\boxed{ \sf\frac{dy}{dx} =  \frac{2x}{ \sqrt{1 -  {x}^{4} }} }\\

Similar questions