Math, asked by arifalig2013, 7 months ago

Find dy/dx, if y = (sin x) ^x +(cos x) ^tan x​

Answers

Answered by aryan073
5

Answer:

\bold{\purple{\fbox{\red{Answer}}}}

y =  {sinx}^{x}  +  {cosx}^{tanx}.........(1)

 \:  \:  \: to \: find =  \frac{dy}{dx}

y =  {sinx}^{x}  +  {cosx}^{tanx}

by \: getting \: log \: both \: side

logy = log {sin}^{x}  + log {cosx}^{tanx}

logy = xlogsinx + tanxlogcosx

by \: product\: rule

 \frac{1}{y}  \times  \frac{dy}{dx} =  logsinx \times  \frac{1}{sinx} \times cosx  +  {secx}^{2}  \times  logcosx \:  \times  \frac{1}{cosx}  \times  - sinx

just \: simplify

 \frac{dy}{dx}  = y(logsinx \times  \frac{cosx}{sinx}  +  {secx}^{2}  \times logcosx \times  - \frac{sinx}{cosx}

 \frac{dy}{dx }  = y(logsinx \times cotx +  {secx}^{2}  \times logcosx -  tanx)

 \frac{dy}{dx}  = y(logsinx \: cotx -  {secx}^{2}logcosx \: tanx)

from \: equation \: (1) \: answer \: will \: be

 \frac{dy}{dx}  =  {sin}^{x}  +  {cosx}^{tanx} (logsinxcotx -  {secx}^{2}logcosxtanx)

☞ correct\large\blue{\rm\:Answer}

 \frac{dy}{dx  }  =  {sin}^{x}  +  {cosx}^{tanx} (logsinxcotx -  {secx}^{2} logcosxtanx)

Similar questions