Physics, asked by sdey30525, 1 month ago

find dy/dx if y= (x-1)(2x+5)

Answers

Answered by wwwsweety433com
3

Explanation:

for example

First expand:

(x+1)(2x-5)=

2x^2 + 2x - 5x -5 =

2x^2–3x-5

Then differentiate:

2x^2 → 4x

-3x → -3

5 → disappears

So the answer is f’(x) = 4x-3

Answered by pulakmath007
1

\displaystyle \bf   \frac{dy}{dx}  = 4x + 3

Given :

To find :

\displaystyle \sf   \frac{dy}{dx}

Solution :

Step 1 of 2 :

Simplify the given function

Here the given function is

\displaystyle \sf  y = (x - 1)(2x + 5)

\displaystyle \sf{ \implies }y = x(2x + 5)  - 1(2x + 5)

\displaystyle \sf{ \implies }y = 2 {x}^{2}  + 5x - 2x - 5

\displaystyle \sf{ \implies }y = 2 {x}^{2}  + 3x - 5

Step 2 of 2 :

\displaystyle \sf Find   \:  \:  \frac{dy}{dx}

\displaystyle \sf  y = 2 {x}^{2}  + 3x - 5

Differentiating both sides with respect to x we get

\displaystyle \sf   \frac{dy}{dx} =   \frac{d}{dx}(2 {x}^{2}  + 3x - 5)

\displaystyle \sf{ \implies }\frac{dy}{dx} =   \frac{d}{dx}(2 {x}^{2}  )+ \frac{d}{dx}(3x) - \frac{d}{dx}(5)

\displaystyle \sf{ \implies }\frac{dy}{dx} = 2  \frac{d}{dx}( {x}^{2}  )+3 \frac{d}{dx}(x) - \frac{d}{dx}(5)

\displaystyle \sf{ \implies }\frac{dy}{dx} = 2  \times 2 \times  {x}^{2 - 1}  +3  \times  {x}^{1 - 1}  - \frac{d}{dx}(5)\:  \:  \: \bigg[ \:  \because \:\frac{d}{dx}( {x}^{n}  )  = n {x}^{n - 1} \bigg]

\displaystyle \sf{ \implies }\frac{dy}{dx} = 4x  +3   {x}^{0}  - 0\:  \:  \: \bigg[ \:  \because \:\frac{d}{dx}(c )  = 0 \bigg]

\displaystyle \sf{ \implies }\frac{dy}{dx} = 4x  +3

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Let 5f(x)+ 3f(1/x)=x+2 and y= xf(x) . then x=1 point dy/dx= ?

https://brainly.in/question/19870192

2. Let f(1) = 3,f' (1)=- 1/3,g (1)=-4 and g' (1) =-8/3

The derivative of √[[f(x)]^2+ [g (x)]^2] W. r. to. x. is

https://brainly.in/question/18312318

#SPJ2

Similar questions