find dy/dx if y=(x-1)(x-2)/
![\sqrt{x} \sqrt{x}](https://tex.z-dn.net/?f=+%5Csqrt%7Bx%7D+)
Answers
Answered by
0
Answer:
Solution :
y=sin−1(x1−x−−−−−√+x−−√1−x2−−−−−√)→(1)
Let x=sinθ
Then, cosθ=1−x2−−−−−√
Let x−−√=sinϕ
then, cosϕ=1−x−−−−−√
Putting these values in (1),
⇒y=sin−1(sinθcosϕ+cosθsinϕ)
⇒y=sin−1(sin(θ+ϕ))
⇒y=θ+ϕ
⇒y=sin−1x+sin−1x−−√
Now, differentiating both sides w.r.t. x,
⇒dydx=11−x2−−−−−√+11−x−−−−−√∗12x−−√
⇒dydx=11−x2−−−−−√+12x(1−x)−−−−−−−√
Attachments:
![](https://hi-static.z-dn.net/files/dc5/0f6c9d0414e395caeabf823a2c22b705.jpg)
Similar questions