Physics, asked by kaustubhpande19, 8 months ago

find dy/dx if y =√x + 1/√x​

Answers

Answered by sahad786
1

Answer:

y=

x

+

x

1

y=x^{\frac{1}{2}}+x^{\frac{-1}{2}}y=x

2

1

+x

2

−1

\text{Differentiate with respect to x}Differentiate with respect to x

\displaystyle\frac{dy}{dx}=\frac{1}{2}x^{\frac{-1}{2}}-\frac{1}{2}x^{\frac{-3}{2}}

dx

dy

=

2

1

x

2

−1

2

1

x

2

−3

\displaystyle\frac{dy}{dx}=\frac{1}{2\sqrt{x}}-\frac{1}{2\,x\sqrt{x}}

dx

dy

=

2

x

1

2x

x

1

\text{Now,}Now,

\displaystyle\,2x\,\frac{dy}{dx}+y2x

dx

dy

+y

=\displaystyle,2x(\frac{1}{2\sqrt{x}}-\frac{1}{2\,x\sqrt{x}})+\sqrt{x}+\frac{1}{\sqrt{x}}=,2x(

2

x

1

2x

x

1

)+

x

+

x

1

=\displaystyle\frac{2x}{2\sqrt{x}}-\frac{2x}{2\,x\sqrt{x}}+\sqrt{x}+\frac{1}{\sqrt{x}}=

2

x

2x

2x

x

2x

+

x

+

x

1

=\displaystyle\sqrt{x}-\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{1}{\sqrt{x}}=

x

x

1

+

x

+

x

1

=\displaystyle\,2\,\sqrt{x}=2

x

\implies\boxed{\bf\,2x\,\frac{dy}{dx}+y=2\,\sqrt{x}}⟹

2x

dx

dy

+y=2

x

Similar questions