Math, asked by lawrencesequeira44, 11 months ago

find dy/dx if y=(x+1)/√x ,x=1/4​

Answers

Answered by BendingReality
12

Answer:

\displaystyle \sf \longrightarrow y'=-3 \\

Step-by-step explanation:

Given :

\displaystyle \sf y=\frac{\left( x+1 \right)}{\sqrt{x}} \\ \\

We have to find d y / d x at x = 1 / 4 :

Using quotient rule :

= > d / d x [ f ( x ) / g ( x ) ] = [ g ( x ) . f' ( x ) - f ( x ) . g' ( x ) ] / [ g ( x ) ]²

\displaystyle \sf y'=\frac{\sqrt{x}\left( x+1 \right)'-\left(x+1\right)\left(\sqrt{x}\right)'}{\left[\sqrt{x}\right]^2} \\ \\

\displaystyle \sf y'=\frac{\sqrt{x}\left( x+1 \right)'-\left(x+1\right)\left(\sqrt{x}\right)'}{x} \\ \\

\displaystyle \sf y'=\frac{\sqrt{x}\left( 1+0 \right)-\left(x+1\right)\left(\sqrt{x}\right)'}{x} \\ \\

\displaystyle \sf y'=\frac{\sqrt{x}-\left(x+1\right)\left(\sqrt{x}\right)'}{x} \\ \\

\displaystyle \sf y'=\frac{\sqrt{x}-\left(x+1\right)\left(\dfrac{1}{2\sqrt{x}}\right)}{x} \\ \\

\displaystyle \sf y'=\frac{2x-\left(x+1\right)}{2x.\sqrt{x}} \\ \\

\displaystyle \sf y'=\frac{x-1}{2x.\sqrt{x}} \\ \\

Now at x = 1 / 4 :

\displaystyle \sf y'=\frac{\dfrac{1}{4} -1}{2.\dfrac{1}{4} .\sqrt{\dfrac{1}{4} }} \\ \\

\displaystyle \sf y'=\frac{\dfrac{-3}{4}}{2.\dfrac{1}{4} .\dfrac{1}{2} } \\ \\

\displaystyle \sf y'=\frac{\dfrac{-3}{4}}{\dfrac{1}{4} } \\ \\

\displaystyle \sf \longrightarrow y'=-3 \\ \\

Hence we get required answer!

Similar questions