Math, asked by sakshiranamagar2000, 2 months ago

Find dy/dx if y=x/√1+x²

Answers

Answered by KhanLayba0107
0

Answer:

dy/dx= 1/(1+x^2)^{3/2}

Step-by-step explanation:

y=x/\sqrt{1+x^2}\\

∵ Quotient rule states

d(u/v)/dx = (v.du/dx-udv/dx)/v^2\\

d(x/\sqrt{1+x^2})/dx=[\sqrt{1+x^2}.d(x)/dx-x.d(\sqrt{1+x^2})]/ (\sqrt{1+x^2} )^2\\

d(x)/dx=1 and d(\sqrt{1+x^2}) /dx=x/\sqrt{1+x^2} {By chain rule}

dy/dx=[\sqrt{1+x^2} -(x^2/\sqrt{1+x^2})]/1+x^2\\

dy/dx=(1+x^2-x^2) / (\sqrt{1+x^2})(1+x^2)

dy/dx= 1/(1+x^2)^{3/2}

Similar questions