Math, asked by h91745616, 7 months ago

find dy/dx, if y=x^logx​

Answers

Answered by Asterinn
4

Given :

y =   {{x}^{log \: x} }

To find :

 \dfrac{dy}{dx}

Solution :

 \implies \: y =   {{x}^{log \: x} }

Taking log both sides :-

\implies \:log \:  y =log  ( {{x}^{log \: x} })

\implies \:log \:  y =log  (x )\:  \: log  ( {x})

\implies \:log \:  y =  ({log \:    {x})}^{2}

Now differentiating both sides :-

\implies \: \dfrac{d(log \:  y)}{dx}  =\dfrac{d(({log \:    {x})}^{2} )}{dx}

using Chain rule :-

\implies  \dfrac{1}{y} \dfrac{dy}{dx}   =2log  (x ) \times  \dfrac{d(log  (x ))}{dx}  \times  \dfrac{dx}{dx}

We know that :-

d(log t)/dt = 1/t

\implies  \dfrac{1}{y} \dfrac{dy}{dx}   =2log  (x ) \times  \dfrac{1}{x}  \times  1

\implies  \dfrac{1}{y} \dfrac{dy}{dx}   = \dfrac{2log  (x )}{x}

\implies   \dfrac{dy}{dx}   = \dfrac{2log  (x )}{x} \times y

Now put :-

y =   {{x}^{log \: x} }

\implies   \dfrac{dy}{dx}   = \dfrac{2log  (x )}{x} \times  {{x}^{log \: x} }

\implies   \dfrac{dy}{dx}   = (\dfrac{2log  (x )}{x} )  {{x}^{log \: x} }

Answered by Anonymous
1

Given ,

The function is  \tt y =  {x}^{log(x)}

Taking log on both sides , we get

 \tt \implies log(y)  = log ({x}^{ log(x) } )

\tt \implies log(y)  =log(x) \times  log ({x}^{  } )

\tt \implies log(y)  =  \{{log(x) \}}^{2}

Differentiating wrt x by using chain rule , we get

\tt \implies \frac{d}{dx}  log(y)  =   \frac{d}{dx} \{{log(x) \}}^{2}

\tt \implies \frac{1}{y}   \frac{dy}{dx}   =    2log(x)  \frac{d}{dx}  log(x)

\tt \implies \frac{1}{y}   \frac{dy}{dx}   =    2log(x)  \times  \frac{1}{x}

\tt \implies \frac{1}{y}   \frac{dy}{dx}   =       \frac{2log(x) }{x}

\tt \implies  \frac{dy}{dx}   =       y \{\frac{2log(x) }{x}  \}

\tt \implies  \frac{dy}{dx}   =     {x}^{log(x)}      \{\frac{2log(x) }{x}  \}

\tt \implies  \frac{dy}{dx}   =     2{x}^{log(x) - 1}   \times     log(x)

Remmember :

 \tt \mapsto \frac{d}{dx}  log(x)  =  \frac{1}{x}

\tt \mapsto   log( {m}^{n} )  = n \times log(m)

Similar questions