Math, asked by gautamikhaire14, 3 days ago


Find: dy/dx, if y=x sinx + cos x

Answers

Answered by jitenderjakhar
1

Answer:

dy/ dx = (-x cosx + sinx ) - sinx

dy/dx = -x cosx

Step-by-step explanation:

please mark as brainliest.

Answered by anindyaadhikari13
9

Solution:

Given That:

 \rm \longrightarrow y = x \sin(x) +  \cos(x)

Differentiating wrt x, we get:

 \rm \longrightarrow  \dfrac{dy}{dx} =  \dfrac{d}{dx} \{x \sin(x) +  \cos(x) \}

We know that:

 \bigstar \: \underline{ \boxed{ \rm \dfrac{d}{dx}(f \pm g) =  \dfrac{d}{dx}f \pm \dfrac{d}{dx} g  }}

 \bigstar \: \underline{ \boxed{ \rm \dfrac{d}{dx}(f \cdot g) =  g\dfrac{d}{dx}f + f\dfrac{d}{dx} g  }}

Using this results, we get:

 \rm \longrightarrow  \dfrac{dy}{dx} =  \dfrac{d}{dx} x \sin(x) + \dfrac{d}{dx}   \cos(x)

 \rm \longrightarrow  \dfrac{dy}{dx} = \bigg[\dfrac{d}{dx} x \sin(x)  \bigg]+ \dfrac{d}{dx}   \cos(x)

 \rm \longrightarrow  \dfrac{dy}{dx} = \bigg[x\dfrac{d}{dx}\sin(x)  +  \sin(x)  \dfrac{d}{dx}x  \bigg]+ \dfrac{d}{dx}   \cos(x)

 \rm \longrightarrow  \dfrac{dy}{dx} = \bigg[x\cdot \cos(x)  +  \sin(x) \cdot 1\bigg] -  \sin(x)

 \rm \longrightarrow  \dfrac{dy}{dx} =x\cos(x)

★ Which is our required answer.

Learn More:

\begin{gathered}\boxed{\begin{array}{c|c}\bf f(x)&\bf\dfrac{d}{dx}f(x)\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \sf k&\sf0\\ \\ \sf sin(x)&\sf cos(x)\\ \\ \sf cos(x)&\sf-sin(x)\\ \\ \sf tan(x)&\sf{sec}^{2}(x)\\ \\ \sf cot(x)&\sf-{cosec}^{2}(x)\\ \\ \sf sec(x)&\sf sec(x)tan(x)\\ \\ \sf cosec(x)&\sf-cosec(x)cot(x)\\ \\ \sf\sqrt{x}&\sf\dfrac{1}{2\sqrt{x}}\\ \\ \sf log(x)&\sf\dfrac{1}{x}\\ \\ \sf{e}^{x}&\sf{e}^{x}\end{array}}\\ \end{gathered}

Similar questions