Math, asked by mandaokaranil1966, 4 months ago

find dy/dx if y=x^tanx​

Answers

Answered by Asterinn
50

 \rm  \longrightarrow y =  {x}^{tan \: x}

Taking log both side :-

 \rm  \longrightarrow \: log \:  y =  log \: {x}^{tan \: x}

\rm  \longrightarrow \: log \:  y =tan  \: x   \:  \:  \: log \: {x}

\rm  \longrightarrow \:  \dfrac{d(log \:  y)}{dx}  =\dfrac{d(tan  \: x   \:  \:  \: log \: {x})}{dx}

\rm  \longrightarrow \:  \dfrac{1}{y}   \times \dfrac{dy}{dx}  =log \: {x} \: \dfrac{d(tan  \: x    )}{dx}   + tan  \: x  \: \dfrac{d(log \: x )}{dx}

\rm  \longrightarrow \:  \dfrac{1}{y}   \times \dfrac{dy}{dx}  =(log \: {x}  \times {sec}^{2} x) +( tan  \: x   \times  \dfrac{1}{x} )

\rm  \longrightarrow \:  \dfrac{1}{y}   \times \dfrac{dy}{dx}  = {sec}^{2} x \:  \: log \: {x} + \dfrac{tan  \: x}{x}

\rm  \longrightarrow \:  \dfrac{dy}{dx}  =y \bigg( {sec}^{2} x \:  \: log \: {x} + \dfrac{tan  \: x}{x} \bigg)

Now , put y = x^tanx

\rm  \longrightarrow \:  \dfrac{dy}{dx}  = {x}^{tan \: x}   \: \bigg( {sec}^{2} x \:  \: log \: {x} + \dfrac{tan  \: x}{x} \bigg)

Answer :-

 \rm{x}^{tan \: x}   \: \bigg( {sec}^{2} x \:  \: log \: {x} + \dfrac{tan  \: x}{x} \bigg)

Additional Information :

d(e^x)/dx = e^x

d(x^n)/dx = n x^(n-1)

d(ln x)/dx = 1/x

d(sin x)/dx = cos x

d(cos x)/dx = - sin x

d(tan x)/dx = sec² x

d(sec x)/dx = tan x * sec x

d(cot x)/dx = - cosec²x

d(cosec x)/dx = - cosec x * cot x


Steph0303: Perfect!
Asterinn: Thank you! :D
BrainlyIAS: Awesome !
Asterinn: Thank you! :)
Similar questions