Math, asked by kk9866974, 24 days ago

find dy/dx if y=x^-x​

Answers

Answered by Anonymous
12

Given Expression,

  \sf \: y =  {x}^{ - x}

Taking log on both sides,

  \longrightarrow \sf \: log(y)  =  log( {x}^{ - x} )  \\  \\ \longrightarrow \sf \: log(y)  =  - x log( x )

Differentiating w.r.t x,

 \longrightarrow \sf \:  \dfrac{ d \{log(y) \} }{dy}  \times  \dfrac{dy}{dx}  =  log(x)  \dfrac{d( - x)}{dx}   - x \dfrac{d \{ log(x)  \}}{dx}  \\  \\  \longrightarrow \sf \:  \dfrac{1}{y}  \times  \dfrac{dy}{dx}  =  -  log(x)  -  \dfrac{x}{x}  \\  \\  \longrightarrow \sf \:   \dfrac{dy}{dx}  =  - y \bigg \{ log(x)   + 1 \bigg \} \\  \\ \longrightarrow  \boxed{ \boxed{\sf \:   \dfrac{dy}{dx}  =  -  {x}^{ - x}  \bigg \{ log(x)   + 1 \bigg \} }}

Answered by Anonymous
0

Answer:

Given : y = xˣ

Apply log on both sides, we get  

log y = log(xˣ)  

⇒ log y = x log x  

Differentiate with respect to x on both sides, we get  

⇒ (d/dx)(log y) = (d/dx)(x log x)  

⇒ (1/y) * (dy/dx) = x(log x)' + (log x)x'  

⇒ (1/y) * (dy/dx) = (x/x) + 1 * log x  

⇒ (1/y) * (dy/dx) = 1 + log x  

⇒ (dy/dx) = y(1 + log x)  

⇒ (dy/dx) = xˣ(1 + log x)  

Step-by-step explanation:

thanks.

Similar questions