Math, asked by aoumau4402, 1 month ago

Find dy/dx if y= Xpower3+3.x.y+ Y power 3 [derivate]

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {x}^{3} + 3xy +  {y}^{3}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx}(  {x}^{3} + 3xy +  {y}^{3})

can be rewritten as

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{d}{dx}{x}^{3} + \dfrac{d}{dx}3xy +  \dfrac{d}{dx}{y}^{3}

We know,

\red{ \boxed{ \sf{ \:\dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1}}}}

and

\red{ \boxed{ \sf{ \:\dfrac{d}{dx}uv = u\dfrac{d}{dx}v + v\dfrac{d}{dx}u}}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  {3x}^{2} + 3\bigg(x\dfrac{d}{dx}y + y\dfrac{d}{dx}x \bigg) +  {3y}^{2}\dfrac{d}{dx}y

\rm :\longmapsto\:\dfrac{dy}{dx} =  {3x}^{2} + 3\bigg(x\dfrac{dy}{dx} + y \bigg) +  {3y}^{2}\dfrac{dy}{dx}

\rm :\longmapsto\:\dfrac{dy}{dx} =  {3x}^{2} + 3x\dfrac{dy}{dx} + 3y +  {3y}^{2}\dfrac{dy}{dx}

\rm :\longmapsto\:\dfrac{dy}{dx} - 3x\dfrac{dy}{dx} - {3y}^{2}\dfrac{dy}{dx} =  {3x}^{2} + 3y

\rm :\longmapsto\:\dfrac{dy}{dx}\bigg[1 -  {3y}^{2} - 3x\bigg] = 3y +  {3x}^{2}

\bf\implies \:\dfrac{dy}{dx} = \dfrac{3y +  {3x}^{2} }{1 - 3x -  {3y}^{2} }

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions