Math, asked by vivekchembeti39, 5 months ago

Find
dy
dx
il y = \sin x +
✓sinx + √sin x + √sinx
+ ...​

Answers

Answered by choudharypranjal725
0

Answer:

jh jh ft iftekhar Hossain Bangla and English for Today is not a while ago but for now and Plastic and Plastic and Plastic and Plastic for a while and then g from f ty great day

Step-by-step explanation:

cygcfyr teddy re ye do you re f Dr Dr yu forvv ft you have any further information please contact me as soon for a while ago but for me as soon as you can do that too good job description and Plastic and home have limited access j and Plastic and Plastic and home and Plastic for a pleasure meeting

Answered by mathdude500
2

Answer:

 \boxed{\bf \: \dfrac{dy}{dx} = \dfrac{cosx}{2y - 1} \: } \\

Step-by-step explanation:

Given that,

\sf \: y =  \sqrt{sinx +  \sqrt{sinx  +  \sqrt{sinx + ...} } }  \\

On squaring both sides, we get

\sf \:  {y}^{2}  =  sinx + \sqrt{sinx +  \sqrt{sinx  +  \sqrt{sinx + ...} } }  \\

\sf \:  {y}^{2}  =  sinx + y  \\

\sf \:  {y}^{2} - y  =  sinx \\

On differentiating both sides w. r. t. x, we get

\sf \: \dfrac{d}{dx}[ {y}^{2} - y]  =  \dfrac{d}{dx}sinx \\

\sf \: 2y\dfrac{dy}{dx} - \dfrac{dy}{dx} = cosx \\

\sf \: (2y - 1) \dfrac{dy}{dx} = cosx \\

\implies\sf \: \boxed{\bf \: \dfrac{dy}{dx} = \dfrac{cosx}{2y - 1} \: } \\

\rule{190pt}{2pt}

Additional Information:

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {x}^{n}  & \sf  {nx}^{n - 1}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Similar questions