Math, asked by manalayub762, 4 months ago

find dy/dx of ax by^2=cosy​

Answers

Answered by BrainlyPopularman
12

GIVEN :

  \\  \implies \tt (ax)(b {y}^{2} ) =  \cos(y)  \\

TO FIND :

• Value of dy/dx = ?

SOLUTION :

 \\\implies \tt (ax)(b {y}^{2} ) =  \cos(y) \\

 \\\implies \tt (ab)(x{y}^{2} ) =  \cos(y) \\

• Now Differentiate with respect to 'x' –

 \\\implies \tt  \dfrac{d \{(ab)(x{y}^{2} ) \}}{dx} =  \dfrac{d \{\cos(y) \} }{dx}\\

• Using identity –

 \\\longrightarrow \large{ \boxed{ \tt  \dfrac{d \{kf(x) \}}{dx} =k  \dfrac{d \{f(x) \} }{dx}}}\\

• So that –

 \\\implies \tt (ab) \dfrac{d(x{y}^{2} )}{dx} =  \dfrac{d \{\cos(y) \} }{dx}\\

• Using identity –

 \\\longrightarrow \large{ \boxed{ \tt  \dfrac{d(u.v)}{dx} =u\dfrac{dv}{dx} + v\dfrac{du}{dx}}}\\

• And we know that –

 \\\longrightarrow \large{ \boxed{ \tt  \dfrac{d( \cos x)}{dx} = -  \sin(x) }}\\

• So that –

 \\\implies \tt (ab)  \bigg[ x\dfrac{d({y}^{2} )}{dx}  +  {y}^{2} \dfrac{dx}{dx}\bigg]= -  \sin(y) \dfrac{d(y)}{dx}\\

 \\\implies \tt (ab)  \bigg[ x(2y)\dfrac{dy}{dx}  +  {y}^{2} \bigg]= -  \sin(y) \dfrac{d(y)}{dx}\\

 \\\implies \tt 2abxy \dfrac{dy}{dx} + ab {y}^{2} = -  \sin(y) \dfrac{d(y)}{dx}\\

 \\\implies \tt 2abxy \dfrac{dy}{dx} + ab {y}^{2}  +  \sin(y) \dfrac{d(y)}{dx} = 0\\

 \\\implies \tt  \dfrac{dy}{dx}(2abxy + \sin y) + ab {y}^{2} = 0\\

 \\\implies \tt  \dfrac{dy}{dx}(2abxy + \sin y)  =  -  ab {y}^{2} \\

 \\\implies \large { \boxed{\tt  \dfrac{dy}{dx}=  \dfrac{-  ab {y}^{2}}{(2abxy + \sin y)  } }}\\

Answered by Anonymous
166

Correct Question :

  • find dy/dx of ax + by^2=cosy

Given :

  • ax + by^2=cosy

To Find :

  • find the value of dy/dx

Solution :

We have ,

: \implies \sf \: ax + b {y}^{2}  =  \cos y \\ \\  \\ : \implies\sf  \red{differentiate  \: }\green{ with} \blue{ \:  respect }\pink{ \:  to \: x} \:  \\ \\ \\ : \implies \sf  \frac{d}{dx} ax +  \frac{d}{dx} b {y}^{2}  =  \frac{d}{dx}  \cos y \\  \\\\   \:  \:  \: \boxed{ \because : \implies\sf  \frac{d}{dx}  {x}^{n} = n {x}^{n - 1}   \: and \:  \frac{d}{dx}  \cos x =  -  \sin x} \\ \\ \\ : \implies \sf \: a \:  + 2by \frac{dy}{dx}  =  -  \sin y \frac{dy}{dx}  \\ \\ \\ : \implies \sf 2by \frac{dy}{dx}  +  \sin y \frac{dy}{dx}  =  - a \\  \\ \\ : \implies \sf  \frac{dy}{dx} \{2by +  \sin y \} =  - a \\ \\  \\  \boxed{ \to \sf \frac{dy}{dx}   =  \frac{ - a}{2by +  \sin y} }\\

 \sf \underline{ hence \:  the} \: \to \sf \frac{dy}{dx}   =  \frac{ - a}{2by +  \sin y}  \:  \:  \:  \\\\

Similar questions