find dy÷dx of sin²y+cosxy=tanx+y.
Answers
Answered by
0
2sinycosy-{sinxy [y+dy/dx * x ] ) = sec2x + dy/dx
sin2y-ysiny-xsiny dy/dx-dy/dx=sec2x
dy/dx=[sec2x+ysinxy]/1+sinxy
sin2y-ysiny-xsiny dy/dx-dy/dx=sec2x
dy/dx=[sec2x+ysinxy]/1+sinxy
Similar questions