Math, asked by fghdst4840, 2 months ago

find dy/dx of the following: x^3+xy^2=y^3+yx^2

Answers

Answered by BrainlyTornado
17

ANSWER:

  • dy/dx = (3x² + y² - 2xy) / (3y² + x² - 2xy).

\\ \\

GIVEN:

  • x³ + xy² = y³ + yx².

\\ \\

TO FIND:

  • The value of dy/dx.

\\ \\

EXPLANATION:

 \implies \sf x^3+xy^2=y^3+yx^2 \\  \\  \\  \mapsto\sf Differentiate\ w.r.t\ x.\\  \\  \\   \bigstar \ \boxed{ \bold{ \large{ \pink{  \dfrac{d}{dx} {x}^{n}  = n {x}^{n - 1}  }}}} \\  \\  \\ \: \bigstar \ \boxed{ \bold{ \large{ \blue{  \dfrac{d}{dx} uv  =uv' + vu'   }}}}  \\  \\  \\  \implies \sf   3x^2 \dfrac{dx}{dx}  + y^2\dfrac{dx}{dx}+2xy\dfrac{dy}{dx}=3y^2\dfrac{dy}{dx} + \dfrac{dy}{dx}x^2+2xy\dfrac{dx}{dx} \\  \\  \\  \implies \sf   3x^2+y^2+2xy\dfrac{dy}{dx}=3y^2\dfrac{dy}{dx} +x^2 \dfrac{dy}{dx}+2xy \\  \\  \\ \implies \sf 3x^2 + y^2 - 2xy=  \dfrac{dy}{dx} (3 {y}^{2} +x^2 - 2xy ) \\  \\  \\  \sf \implies\dfrac{dy}{dx} =  \dfrac{3x^2+y^2 - 2xy}{3 {y}^{2}+x^2  - 2xy}

Similar questions